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Abstract

An analytical model is developed to describe the
response of the "joggle-lap" joint to both tensile and
bending loads. The model consists of a non—linear beam
analysis which calculates stress profiles through the
adherent thickness. A plane stress finite-element model
was incorporated into the analysis to correctly determine
the stress field in the adhesive zone where it was shown
that beam analysis was less accurate. Elastic response of
the "jogglé—lap" joint due to tensile loads was verified
through experimental testing and ultimate loads were
accurately predicted within experimental error. Maximum
adherent flexural stress was found to determine joint
failure. A parametric study was undertaken by using the

verified analytical model and the results were recorded as

a series of design curves.
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Nomenclature |

a cross-sectional area

b adhesive bond thickness
CO’Cl’CZ constants

DEFLA deflection

DUDSA angular rotation

e eccentricity

e elongation

E modulus of elasticity for an

isotropic material

Ef modulus of elasticity of fibers

Em modulus of elasticity of matrix

En modulus of elasticity normal to
the fiber plane

E_,E ,E modulus of elasticity of a general

X'y’ 7z X :
anisotropic body

F applied force

F. j=1-5 force components

hi j=1-5 nodal points

Hi {=1-5 axial force of SEGi

I moment of inertia about neutral
surface

qu equivalent moment of inertia

Zl length of SEG1l

Mi i=1-5 applied moment at SEGi

Mcorr correcting moment

M(S) moment distribution




Nomenclature (Cont'd)

R

SEGi;_;_s

i i=4-6

radius of curvature

beam elements of the "joggle-lap"
joint

specific gravity
ultimate shear strength
adherent thickness

distance between neutral axis
and centroidal axis

deflection at the end of SEGl
local coordinate system
corresponding to individual beam
element

volume fraction of fiber

volume fraction of matrix

shear force on SEGi

weight fraction

global coordinate system

radial coordinate in curved beam
members

ultimate tensile strength
ultimate compressive strength
angle measure

infinitesimal difference
strain components

ultimate strain

angle measure

linear measure




Nomenclature (Cont'd)

. . .
Vij Poisson's ratio

T 3.14159...

G1105rT1o plane stress components
cx,cy,cxy

Cult ultimate strength

oy angle measure




I. Introduction

Recent government regulations for increased
gasoline mileage requirements have induced automobile
manufacturers to seek light weight replacement material
systems for existing metal parts. Since the automotive
industry is a high volume operation, sheet molding compound
(SMC) parts offer a feasible answer to the problem. The
SMC molding time of from 1 to 3 min/piece depending on the
size and thickness of the part is compatible with auto-
motive assembly line production.

International Harvester et al are currently
employing SMC molded body components on their vehicles to
replace former sheet metal parts. This new direction has
brought with it several problems, one of which is the
design of adhesive joints. The joint must accommodate
high rate fabrication technigques and provide optimum
strength and durability. In addition, the joint must
satisfy certain cosmetic requirements such as adjacent
flush edges. With these criteria in mind, the "joggle-
lap" joint has been chosen for detailed study and analysis.
This joint configuration is shown in Figure 1. Since a
joint of this type experiences a variety of loading

conditions in practice, it was decided to model the joint

-1-
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in pure tension and pure bending. By superposition, it is
apparent that any combination of these two loading conditions
may then be constructed.

This work focuses on the development of an analytical
model to describe the behavior of the "joggle-lap" joint
due to both tensile and bending loading conditions. The
first section utilizes small deflection beam theory for
both straight and curved beam elements to obtain a solution
for the displacement and stress fields of the joint.
Included in this analysis is the derivation of the governing
differential equations for the deflection of the curved
beam.

The second section utilizes a finite-element model
to reveal localized stress concenﬁrations in the adhesive
zone. Boundary conditions for the finite element model are
obtained from a transformation of stresses in the deformed
geometry to equivalent stresses in the undeformed geometry.
This transformation of stresses is performed via a computer
routine for ease of calculation.

Finally, experimental verification of the analytical
predictions is reported along with a description of testing
procedures. The maximum flexural stress is shown to correlate
strength data and failure analysis. Also, the microstructure

of the joint was examined as a possible explanation of the

failure mode.




II. Background
A. Adherent Materials
THe adherents of the proposed "joggle-lap" joint
were composed of a random—-fiber compoéité known as‘SMC—ZS.
SMC is defined as a sheet molding compound that contains
reinforcements with an average fiber length of approximately
1 inch (2.54 cm) with random orientation in the plane. The
number 25 indicates that the composite is 25 percent glass
fibers by weight. The major constituents of SMC are E-glass
fibers and a styrenated polyester resin in the form of a
paste. It is quite common to use mineral fillers during
the manufacture of the paste to facilitate flow when molding
or to obtain certain characteristics from the molded part
such as a high resistance to flame or increased stiffness.
Another prime reason for using fillers is the fact that they
are much cheaper than the polyester resin itself and thus
reduce the cost of materiéls. At times, chemical additives
may also be introduced into the paste to serve as catalysts
during the molding cycle.
The process of SMC manufacturing is a highly

innovative one which is completely automated. Figure 2

(taken from Owens/Corning Fiberglass SMC Review) depicts
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a typical process'currently in use by a competitive supplier
of SMC. The first step of the procedure is to distribute
the resin onto a polyethylene carrier film as shown. Con-
tinuous glass fibers are then chopped into lengths of less
than three inches and distributed in a random fashion on
the wetted film. A second layer‘of resin-coated polyethylene
film serves as a top layer to the sandwich-like sheet.
Several rows of rollers act to insure that the glass fibers
are fully impregnated with the polyester resin thus yielding
consistency in moldability of the SMC. PFinally the product
is directed to a take-up roll for ease of handling during
shipping and storage.

SMC is usually placed in a constant temperature room
while storing to allow maturation to take place. Maturation

is nothing more than allowing the SMC to increase
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in viscosity to enhance relative ease of handling of the
sheet. Maturing the SMC sheet for extended periods of
time greatly reduces the flow characteristics of the
product while molaing. Recommended shelf-life for SMC
‘stored at 10-15° C is about 2 weeks, however in general
it may often be used up to 2 months after the date of its
manufacture.

Once the SMC sheet has reached maturity, it is
ready for molding. Upon removing the protective poly-
ethylene film, the molding compound is cut to size and
strategically placed in the mold. This procedure is
known as charging the mold. The so-called strategic
locations of the mold are those positions that allow the
SMC to flow to all parts of the mold and maintain uni-
form part thickness. To date these locations have been
determined by trial and error coupled with experience.

Compression molding combines both temperature and
pressure to induce an exothermic reaction which serves to
cure the part in the mold. Figure 3 (taken from ref [3])
is an example of a typical curing cycle showing the
temperature of the part as a function of time. It should
be noted that platen temperatures of 200° C are usually
sufficient for SMC molding and may be achieved with super-

heated steam. Another important fact seen from the figure

is the overall cure time. Average cure times are generally




OWS d0 HTOAD HIND TUDIdAL ¢ HINOTJI

(sainuiw) awiy

14 € (4 | 0
J T T T 462l

44pd jo Buijpay

4061

: 2.nD JO 44D}S
84Nd jO pud

(Oo) @4njDiddway

wiayjoxa




1-3 minutes (depending upon the thickness of the part)

- which lends itself to production line applications
inherent in the automotive industry. Figure 4 (taken
from ref [3]) shows the effect of pressure upon a typical
cure cycle. Note that the peak pressure and maximum
temperature cofrespond to the initiation of the exothermic
reaction. The key to successful molding is to acquire
fine control of the application of pressure to the cure
cycle.

The main feature of SMC is the ability of the'glass
fibers to flow with the paste during the molding process.
Since the fibers are transported to all parts of the mold,

it is possible to produce a geometrically complicated part

with quasi-constant mechanical properties. It has been

shown by Pipes and Taggart [ref 5], that in areas of

intensified flow, the fibers tend to align themselves with

the direction of flow and thus produce areas of varying

mechanical properties. It is therefore beneficial to under-

stand the flow characteristics within the mold to produce \
a part with controlled and/or uniform mechanical properties.
Taggart et al have determined the properties of SMC-25 to
be those found in Table 1. Some scattering in the data

was reported due to the inherent local variations in the

material. To determine the normal modulus (modulus normal

to the plane of the fibers), the relationship shown may be
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Table 1

Properties of SMC-25

Tension
gtension GPa (Msi) 14.48 (2.1)
L
vten51on .3
ctension
ult MPa (ksi) 90 (13.1)
8tension
ult (4 in/in) 11,400
Compression
gcompression GPa (Msi) 12.41 (1.8)
L
vcompression .28
compression .
Cult MPa (ksi) 204 (29.6)
gcompression (4 in/in) 20,600

ult
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used. This relationship resembles the well-known rule of

mixtures for continucus fibrous composites.

1 ¢ . Vm (1)
By Eg B
where E = normal modulus of elasticity of the composite

Ve = volume fraction of fiber
v_ = volume fraction of matrix
E; = modulus of glass fiber

E._ = modulus of matrix

Table 2 provides the needed data for determining the

normal modulus of elasticity. By definition, SMC is composed

Table 2l
polyester resin E-glass fiber
Modulus of Elasticity
(108 psi) | .5 10
Specific gravity 1.28 2,54

of 25% fiber by weight. Utilizing the equation written below

Ve + vy =1 (2)
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allows one to solve for Ve where Vp may be rewritten as

.8 W
£ . m

v, =V [__._._] [._____]
m £ Sm Wf

Sg = specific gravity of fiber

Sm = specific gravity of matrix
Wy = weight fraction of matrix

We = weight fraction of fiber
Making the appropriate substitutions, Eq. (2) becomes

.25 1.28

+ v =1

v £

£

Thus the corresponding volume fraction of fiber and matrix

are .14 and .86 respectively. From Eg. (1) the value of En

6

is now calculated to be 0.58 x 10  psi.

1

Vinson and Chou




B. Adhesive Materials

The adhesive system chosen for the'"joggle—laé"
joint was developed by the Adhesives Division of Goodyear
Chemicals. The Pliogrip 6000 series is a general purpose
structural adhesive with a polyurethane base. Currently
available as a two-part system, Pliogrip 6000 exhibits
both high flexibility and resilience. With the proper
selection of curatives, the working time of the adhesive
may be accurately controlled between 1-6 minutes.

In order to utilize this adhesive system only

minimal surface preparation is necessary. The two surfaces

to be bonded are prepared with a plastic wash primer
(Pliogrip 6033/6034 Wash Primer) that is applied with a
cloth. No sand blasting or surface stripping is necessary.
To maintain reliably bonded parts, Pliogrip 6000 must be
mixed at a precise ratio of 4 parts resin to 1 part curative
by weight or volume. Deviations from this standard will
yield resin-rich areas of uncured adhesive. The actual
mixing of the two components must be carried out without
the introduction of air into the system, thus the need for
specialized equipment. Without this precaution, entrapped
air bubbles in the cured adhesive would yield voids and
greatly affect the performance of the bond. Curing this
adhesive system can be accomplished at room temperature,

however the use of heated fixtures will reduce cure times.

-13-
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- Recommended clamping pressures of heated fixtures range from
20 to 40 psi.
An important criterion in the design of bonded joints

is that of the adhesive thickness. It has been shown that

adhesive properties wvary inversely with adhesive thickness.
Thus the bulk properties of the adhesive are distinctly
different from those in the film state. So the gquestion is
posed as to the optimum bond thickness as a function of shear
strength. Figure 5 (taken from Pliogrip technical data,
Goodyear Adhesives) shows the effect of glue line thickness
on bond joint strength. A bond line thickness of 0.030
inches was chosen as optimal even though thicknesses less
than 0.030 inches yield greater bond strengths. It was felt
that bonding'thicknesses less than 0.030 inches are not
capable of being fabricated with consistency under production
operations. (i.e. molded FRP parts will inherently not fit
together with reliable precision).

To achieve uniform bond lines, one of two procedures
is generally used. Adherents may have a small raised button
of 0.030 inches in thickness which acts as a spacer for the
joint to insure a uniform bond. Another procedure is to
introduce small glass spheres (0.030 inches dia.) directly
into the adhesive to achieve similar spacing. The effect of
these spheres on joint strength has not been determined but

. it is argued that the variation from the norm is negligible.
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IITI. Methods of Analysis

A. Tensile Loading
a. Beam Model

Recently, Adkins [ref 2] investigated the response
of a scarf joint to simple tensile loadings. It was found
that the scarf joint exhibits flexural deformation under
tensile loading due to the misalignment between the neutral
surface and the loading axis. This eccentricity induces a
moment distribution along the joint (see Figure 9) which‘
acts to align the neutral surface with the loading axis.

The analysis of the "joggle-lap" joint, shown
previously in Figure 1, is an extension of the concept
discussed above. Ag;in it is clear that under tension
the joint will experience a lateral deflection as the
neutral axis attempts to align with the applied force. To
analyze the joint behavior under tensile loading conditions,
it was decided to divide the joint into five segments. The
obvious places to divide the joint are illustrated in
Figure 6 along with the corresponding identifying labels and
global coordinate system. Reference to beam segments via
their identifying numbers will be utilized throughout the
remainder of this analysis.

In general, the goal of the analysis will be to
determine the displacements of the neutral axis as measured

perpendicularly from the undeformed neutral surface. Once

-16-
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the deflections are known, one may calculate a moment
distribution along the joint and thus determine the stress
distribution at anyAgiﬁen cross-section.
The initial intention of such an investigation was
to develop a closed form solution for the stresses within
| the joint. This effort was soon thwarted by the non-linearities
encountered in the governing equations for the beam elements.
These non-linearities result from a coupling between the
moment and deflection solutions, as will be evident later.
As an alternative soluﬁion, the displacement field was
obtained via numerical integration routines.
Linear elastic beam theory states that for a beam
under general loading conditions, the local radius of

curvature is given by

EI (3)

R = i

where R = radius of curvature
E = modulus of elasticity
I = moment of inertia about the neutral surface

M = applied moment

The radius of curvature may be written in terms of

the lateral deflection as given by Eg. (4)

(4)
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Realizing that under the assumptions made with regard
to small deflection theory, the term'(%§)2 will be negligible
when compared to unity. Thus one arrives at the governing

equation for straight beam elements.

a’y _ M
dx2 EI (5)

Since the material system is relatively stiff, it is assumed
that small deflection beam theory will yield sufficiently
accurate results. . Thus, one may write a governing differential
equation for each segment of the joint. By matching boundary
conditions of deflection and slope at each interface, the
deflection of the entire joint may be obtained as a function
of distance along the neutral axis. Details of the analysis
may be reﬁerenced in Appendix B.

To enhance one's understanding of the joint behavior
under applied tensile loadings, Figures 7 through 10 show
deflection, slope, moment, and shear diagrams respectively
at a load of 200 lbs. Many of the discontinuities found
in the plots arise from a shift in the neutral axis which is
a common occurrence among lap Jjoints.

It was stated previously that andlyzing the "joggle-
lap" joint under tension was a non-linear problem. This was
seen by the fact that the moment was a function of the

deflection. Another way to view the non-linearities of the
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joint behavior is to investigate the response of the joint
to varying tensile loads. Figures 1l and 12 provide a

clear indication of the deviation from linearity even for
small values of load. Both the deflection (Figure 11) and
moment (Figure 12) were recorded at the beginning of SEG3.

(i.e. Sy = 0)
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b. Finite Element Model (tension)

Anticipating the shortcomings of a beam bending .
model in the adhesive zone, defined to be the area of actual
bonding, it was decided to model this area using finite-

| element methods. One of the underlying assumptions of small
deflection beam theory is that plane sections remain plane
during pure bending action. Clearly the validity of this
assumption is questionable in the bonded area. Another
reason for employing the finite element technique was to
uncover any local stress concentrations that may not be
revealed in a beam analysis. The finite-element mesh,
consisting of 7 material types, is shown in Figure 13.
Boundary conditions in tﬁe form of concentrated loads were
applied to each of the finely meshed ends. Loading conditions
were applied away from the adhesive layer at a distance of
1.5 times the thickness in an effort to minimize the effects
of the end loads upon the stress solution. An explanation

of how these boundary conditions were determined will follow
shortly. A plane stress analysis was utilized to calculate
the displacement and stress fields. Figures 15 through 17
are the result of a plotting routine which displays lines

of constant stress. The figures should be interpreted in the
same manner as that of a topographical map. Adjacent lines
spacéd closeiy together indicate areas of high stress

gradients and possible sites for structural failure. The

-26-
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figures are labeled according to the component of stress
being displayed. All three plots are the result of loading
the specimen at the tensile failure load and are representative
of the deformed geometry.

The limitations of the beam bending model are
clearly displayed in Figure 15 and reveal the justification
for the finite-element model. Shown in the figure is a
smooth transition of stress across a change in cross-sectional
area, (i.e. shift of the neutral axis) as calculated by the
finite-element method. Experimental results have shown
this to be a ‘correct representation of the stresses. Beam
analysis would have shown a sharp discontinuity in the stress
profile where such a shift in the neutral axis occurs. Since
the moment is nearly constant throughout SEC4 (see Figure 9)
beam analysis would calculate 0, stress contours parallel
to the adhesive layer. The Oyr Oy and T12 stress components
are global oriented stresses as opposed to those that can vary
according to element orientation. Marked on each figure
are those areas where the assumptions made via beam analysis
quite appreciably affect the accuracy of a correct solution.

Many analyses of lap joints assume a condition of
constant shear stress in the adhesive layer itself. This
would indeed be the case if the adherents were infinitely
stiff as compared to the adhesive and also if the existence

of a load transfer area was prohibited. Shear stress data
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from the finite element model is plotted in Figures 18 and 19
and the indication is clear that the shear stress is not a
constant in the load transfer area. The case of constant
shear stress found toward the center of the adhesive zone,
however, reveals the linear nature of the displacement

function through the adhesive thickness in this area.
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Boundary Conditions for the Finite-Element Model

The boundary conditions for the finite-element model
afe determined by applying the stress distribution as directed
by the beam bending model to the finely meshed ends of the
undeformed geometry of the finite element model. 1In other
words, the stresses in the deformed geometry (beam model)
must be moved through a distance to their equivalent point
of application in the undeformed geometry (finite-element
model). The reason for this difficulty with boundary
conditions is that we are currently utilizing a linearized

finite element routine; SAP V2

, to solve a non-linear problem.
Justification of such a procedure will hopefully become
lucid with time.

To facilitate the derivation of a transformation
routine, Figureé 20 and 21 illustrate the following sign
conventions. Figure 20 depicts a stress distribution for
the left hand face of the finite element model with
tension being taken as positive and compression being
negative. Note that the neutral axis is not coincident
with the centroidal axis inherent in the analysis of a
curved beam. As mentioned previously, this fact yields a
hyperbolic stress distribution which slightly complicates

the computations. (SEE derivations of governiné equation

for stresses in a curved beam, Appendix A)

2Structural Analysis Program V; University of Southern
California, Department of Civil Engineering, Oct. 77.
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Figure 21 reveals a planar view of the deformed

and undeformed sections. It is assumed in this derivation

that the section of the beam can at most undergo a trans-

lation and a rotation. Translations are measured via the

parameter DEFLA and are positive radially outward as shown.

Small deflection theory also allows the rotations to be

written as a change in slope. This parameter is DUDSA and

is positive

counter-clockwise.

With these sign conventions clearly in mind the

stress distribution of the deformed geometry may now be

resolved into concentrated force components. Representing

the hyperbolic stress distribution as eguivalent point

forces and point couples acting at nodal points labeled

1 through 5

integration

ni

where i

ni

By =] ]

H W

DUDSA

on Figure 21 corresponds mathematically to an

of the stress distribution between fixed limits.

M fh' u du + fhi
h

F cos (& + DUDSA) du (6)
i-1

1-5

1]

= nodal force component

= moment

= distance between neutral and centroidal axes
= cross-sectional area

= radius of curvature

= load

= angle subtended by SEG3

= local slope of deformed neutral axis
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The first term of Eg. (6) represents the contribution from
the hyperbolic sﬁress distribution. The second term acts
to superimpose the component of force due to longitudinal
loading.

A correcting moment is calculated for each node to

equilibrate the two representations of stress on the section.

- rh.
Moorr = i o(u)u du - F_.u (7)
i-1

The need for the correcting moment is due to the fact that
a distributed force is now represented by a point force as
shown in Figure 22.

The next step follows from a translation of the
point forces. Elementary statics dictates that a point
force may be equivalently represented by the same point
force and an added moment to account for the translation
from the original line of action.

After carrying out a similar procedure for the
stresses at the right hand side of the finite element model,
the entire system is set in equilibrium by accounting for
the shear acting on each face of the model. The values of
shear are obtained directly from the beam bending model.
Thus a correct set of boundary conditions has been determined
for the finite-element model of the adhesive zone. A
computer routine designated by CONVERT was written to

calculate appropriate boundary conditions and may be found
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in Appendix C.

Stress

FIGURE 22: ILLUSTRATION OF THE CORRECTIVE MOMENT



Methods of Analysis

B. Flexure Loading

a. Beam Model

The bending behavior of the "joggle-lap" joint was
also studied. It was found that the theoretical analysis
was far simpler than that encountered for tensile loading.
Each segment of the joint (see Figure 6) was modeled as if
it were in pure bending. Stresses in the straight beam
numbers were calculated vig the flexure formula while for the

curved beams the formula

s = My _ (8)
Yy R-ylva
where M = moment

y = coordinate from the neutral surface
(positive radially inward)

R = radius of curvature
y = distance between centroidal and neutral axes
a = crossectional area
was used.
In order to compute bending stresses in SEG4
(layered beam) it is necessary to introduce the notion of
equivalent sections. In this method we assume all materials

to have‘the same modulus of elasticity. By replacing the

actual section with a mechanically equivalent one allows

-41-~
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the flexure formula to be used as a means of computing
stresses. The width of the sections are varied so that

the new width equals the ratio of the old modulus of the
material to the new modulus of the material times the old
width as shown in Figure 23. Computing qu. for the specimen

geometry,
33
Ieq =iil(I§ bihi

3 2
+ aidi )

b = length of base

h = length of side

a = area

d = distance between element neutral axis and
overall section neutral axis

it is apparent that the effect of the adhesive layer on
overall section stiffness is negligible. Using the flexure

formula and the relation

E
(o) old (Gx)equiv.

x’actual T~ E

new

the stresses in SEG4 may easily be calculated.




-43-

E, 5=2.1x10° psi
E, = I.OxIO5 psi

® 003 T
@— 0.23
® !
| L0.10
= 1.0 -

Actual End Section \}iew

E=2.1x10°%psi

o.fs T
neutral
surface = —m——mm————vx— e s o 0.23
|
—= —0.047 -0.10
e 1.0 -

Equivalent Section

FIGURE 23: METHOD OF EQUIVALENT SECTIONS



b. Finite Element Model (flexure)

The boundary conditions of the finite-element model
may be changed to accommodate pure bepding. By utilizing
couples at the finely meshed ends of the model, stresses in
the adhesive zone may be monitored where it has been shown
that the results from beam theory are less accurate. Figures
24 through 26 display G1r05¢ and T12 stress contours
respectiveiy within the "joggle-lap" joint in pure

bending.
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IV. Experimental Results

A. Tension

As set forth in the objectives of such a study,
an emphasis was to be placed upon developing joint
geometries which will accommodate high rate fabrication
techniques. In an effort to meet this criterion
experimentally, it was necessary to utilize a joint
configuration currently being molded in industry. The
time and expense of developing in-house molding
capabilities proved to be beyond the scope of the
research at hand. Thus, test sections were cut from
premolded panels of SMC which were later bonded together
to form the joint.

The bonding operation was also directed toward
high fabrication procedures. All test specimens were
adhesively joined at Goodyear Adhesives Division, Ashland,
Ohio, via production adhesives application techniques.

It was felt that by using these sophisticated application
procedures optimum adhesive properties could be obtained.

In general, SMC is defined to be an anisotropic
material because of the substantial difference between
in-plane and out-of-plane properties. Referring to the

coordinate system of Figure 1, the constitutive relations

-48-
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that the joint invariably strained beyond the small-deflection
range at considerably small loadings. It was therefore a
rather arduous task to approximately determine the
experimentally applied moment to the joint. The correlation
between the theoretical and experimental data may be
referenced in Figures 31-34. As in the case of tensile
loading, it should be noted that the stresses in SEGl are
again considerably higher than those predicted by theory,

which is attributable to the molded geometry.
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V. Failure Analysis

One of the most important parameters to predict

in a study of this type is the ultimate loading conditions.

This in essence dictates the choice of a failure criterion.

The maximum stress theory will be employed in this report
because of its simplicity in application and execution.
Other popular failure criteria, such as the Tsai-Wu
criterion were deemed inappropriate due to the limiting
assumptions made in accordance with beam theory.

Maximum stress criterion states that the materiai
will fail when any component of stress exceeds the
corresponding material strength. In general, the above

statement may be written in equation form as

oi-‘xi (oi>0) i=1-3
> x.€ L = 1-
log 12 %5 (0,<0) i=1-3
> .
lo 1= 85 i = 4-6
where xiT = ultimate tensile strencth
XiC = ultimate compressive strength
1 = ultimate shear strength

These equations simplify to those listed below after

employing the local coordinate nomenclature for the
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(14)

(15)

(16)
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"joggle-lap" joint.

o, 2 X (“u>0) (17)
ERER (9u<0) (18)
0] >
|“us|= s, (19)

Applying this failure criterion to the model, it was

found that the bottom fiber tensile stresses (see Figure 35)
predicted the ultimate loading of the joint within
experimental error. Thus the maximum flexural stress

was utilized to predict failure.

All failures occurring as a result of tensile
loading were initiated along the bottom surface of SEG3.
Crack initiation was observed to be of the net tension mode,
while propagation appeared to be due to "interlaminar shear".
There was a general consistency among the initiation and
propagation of the crack for all tension tests.

It was thought at one time that the curved sections
of the joint (SEG2, SEG3) were either fiber deficient
or highly anisotropic yielding a potential low strength
area. However, a photomicrograph of this cross-sectional

area clearly shows no such tendencies. (See Plate 7)
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VI. Conclusions

The response of the "joggle-lap" joint was
investigated for both tensile and bending loads in this
report. It was found that experimental data correlated
rather well to the values of stress predicted by the
analytical model. The results of the bending study were
not as favorable, in that experimental verification proved
to be more difficult.

A parametric study was undertaken for the "joggle-
lap" joint subject to tensile loads in an effort to
isolate the crucial design parameters. In Figures 37
through 40 a normalized stress value is plotted against
one of four parameters - adherent thickness, inside radius,
contact area, and load. From these design curves the

following conclusions are inferred.

+ If weight saving requirements are not
stringent, the effect of increasing
adherent thickness drastically reduces

maximum flexural adherent stress.

+ Increasing the radius of curvature
has a negligible effect on reducing
maximum adherent stress due to a

trade-off between mechanisms.
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+ Neglecting local stress concentrations,
the effect of reducing the overlap
length does not increase adherent stress

significantly.

« In the region of the failure load, the
maximum adherent stress increases linearly

with load.

An important parameter in joint design is that of
joint effic%?ncy. This parameter is defined to be the
ratio of ultimate joint load divided by the ultimate load
carried by the material if the joint were not present.
The joint efficiency of the "joggle-lap" joint in tension
is calculated to be 0.153.

The adhesive system employed in this report
proved to be quite adequate from a structural point of
view. For the given overlap length of 1 in (2.54 cm)
there were no recorded failures in the adhesive layer.
Failure loads were predicted using the maximum flexural
stress as the limiting criterion.

| This report would be incomplete if it did not offer
several suggestions for future work as an outgrowth of
this study. An obvious limitation to the work reported

herein is the inability to extensively verify the analytical

model by experimental testing of various joint geometries.
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Further development in this area would greatly increase
the reliability of the computer model.

More detailed work needs to be completed in the
response of the "joggle-lap" joint to bending loads.
This report included only a cursory investigation of
bending behavior as a means of identifying the underlying
problems associated with the experimental verification
of theory.

It is felt that this report will provide a
fundamental basis for future research concerning the

.

"joggle-lap" joint.
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X. Appendices
Appendix A
Derivation of the Governing Equations

for a Curved Beam

Consider the curved beam element shown in

Figure 41. centroidal
neutral

Center of Curvature

FIGURE 41: CURVED BEAM ELEMENT

The analysis begins by seeking an expression for the
strain distribution perpendicular to the neutral axis.
Assume that the curved beam, with an initial radius.of
curvature R, undergoes a small elastic deformation due
to the applied moment. (It is important to note that
the neutral axis of bending for a curved beam does not
necessarily coincide with the centroidal axis of the
beam.) Under the action of this moment it becomes

apparent that segment cd rotates about the neutral axis
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to a new position ¢'d'. It is assumed here, as in
classical beam analysis, that plane sections remain
plane. It is readily seen that while the deformation
of the beam varies linearly with the distance from the
neutral axis, the strains do nct. The reason is that
the original length of all the fibers prior to the
application of the moment are not constant.

Thus the following relation for the strain

distribution is written below.

e, -yAD
where e, = elongation

y = radial coordinate (positive radially inward)

AB angle of deformation
Ad = angle subtended by curved beam
The above equation shows the strain to vary hyperbolically

across the section. Using the plane stress constitutive

relation, Eg. (20) becomes

- —Ey A® '
O = R-7)5% (21)

Now it is appropriate to derive the formulas for flexural
stress. First assume that the portion of the beam is in
equilibrium. Following directly one may write the

equations of equilibrium for an arbitrary section.
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ZFaxial =0

fAcda =0 (22)

Making the appropriate substitutions for the stress

Eq. (22) becomes

I -EyAbda

A TRy)86 ~ 0 (23)

Assuming E, A¢, and A6 to be constants the integral is

simplified as shown in Eg. (24).

da _

It is possible to solve Eq. (24) for the radius of curvature
and thus locate the neutral surface; however, it will suffice
to let Eg. (24) stand as is for now.

Referring to Figure 42 and summing moments about the

neutral /
axis
hyperbolic
stress distribution
K’ <
M / f FIGURE 42
fine of '
arbitrary
section

neutral axis, one finds that the stress distribution must

also satisfy the equation below.
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M= —fAcryda (25)

making the appropriate substitutions, Eg. (25) becomes

= - ~yAS
M= IA E( (R_y)A¢)yda (26)
EAD y2
M= Y fA (R_y)da (27)

Notice the algebraic relation that permits the substitution

of an equivalent expression into Eg. (27).

2
Y =Ry _y (28)

Eg. (27) now becomes

. — EA8 Ryda _
and from the result of Eg. (24)
_ EAS =
where a = area
2 = distance between the neutral and

centroidal axes

Rearranging Eg. (30) yields

88 . M (31)

|
\
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Comparing this equation with the well-known deflection

equation for straight beams, it is apparent that

(32)

the left hand side of Eg. (31) is not yet suitable. The
ultimate goal of such an analysis is to seek an equation
that relates the deflection of the neutral axis to the
position along the neutral axis.

Consider Figure 43 shown below.

-——
’—_ ‘\

neutral axis of the
undeformed geometry

) M(s)

N4 \ neutral axis of the

deformed geometry

FIGURE 43: CURVED BEAM ELEMENT SUBJECT TO DEFLECTION

The beam is deflected as shown to illustrate the most

general case of a non-constant moment. That is, the moment

is a function of position. Now the deflection can be measured
as the deviation between the undeformed neutral surface and
the deformed neutral surface. For convenience just the
neutral axis and appropriate parameters are drawn in

Figure 44.
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AS undeformed

neutral
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~
, ~

deformed

neutral
////’-ans

FIGURE 44

A coordinate system u,s is defined and shown in the figure

where s traverses tangentially to the undeformed neutral

axis and u is defined to be perpendicular to that axis.
Enlarging the area of interest and focusing on

the triangle of Figure 45, one finds that

FIGURE 45
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B(s) =

>
>

~

Realizing that_tan o = a for small o, it follows that

_ {(R+u)As
aX = - R
and thus
B (s) - RAu
(R+u) As

which may be written as

Aa _  (R+u) 8 (s)

Finally in the limit as As»0: Eg. (33) becomes .

lim Au _ (R+u)6(s) _ du

AS+0 TAs T R = &5 (34)
From Eg. (31), several simplifications can be made with
the proper substitutions.

o _ _-M

b8 Eau
where _ As

Ap = =

lim A6 _ -M _ dé

As+ 0 “As T ds (35)

REau

Differentiating Eg. (34) with respect to s yields
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a®u _ (R+u) do

ds<4 R ds

and substituting Eq. (35) into Eg. (36) yields the final

results - a second order differential equation relating

deflection to position in terms of the applied moment.
d™u _ (R+u)M

ds? R%Eal

(36)

(37)




Appendix B
Beam Bending Model of the "Joggle-Lap" Joint

SEGl may be modeled as a straight beam shown in

Figure 46.

. FIGURE 46: -'SEGl MODELED AS A STRAIGHT BEAM

In general, the moment experienced by any segment originates
from two sources: eccentricity from geometry and
eccentricity due to deflection. The preceding statement

may be written algebraically as follows.

M= F(egeom + edefl) (38)
where M = moment

F = applied force

e = eccentricity
It is readily seen that egeom = 0 for SEGl. Writing Eqg. (38)

in the local coordinate system, the moment experienced by

~83~
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this segment reduces to

M = Ful

where

u, = deflection in the local

coordinate system

Substituting Eqg. (39) into Eq. (5) vields

2
d ul _ Ful .
dsi EI

The corresponding boundary conditions are expressed

below

ul(O) =0

where u, is yet undetermined.

The solution of Eq. (40) is of standard form and known

to be

u, = C, sinhyF/EI + s, + C

1 1 1

Applying the boundary conditions to Eg. (41) determines

the constants C, and C, to be

1

C, =20

C1 = uo//,51nh F/EI -

and thus

5 cosh F/EI-- s

1

21

(40)

(41)
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Uy = ug sinhvfﬁyEI * Sy
0<s,<8

- (42)
sinh{/ F/EI - 24 11

where u, is necessarily negative to correspond with the
physical system. 1In other words, for a given tensile
load it is expected that SEGl will deflect downward.

(Figure 6). Also

du

a;i (¢,) = u, vV F/EI cosh VE/EI 2,

1

sinh F/EI 21

It should be noted that the deflection as given
by Eg. (42) is not known explicitly in terms of the given
parameters. U, is still unknown and it will be shown later
how this value may be determined uniquely.

SEG2 is modeled as a curved beam and shown in
Figure 47. The local coordinate system is a curvilinear
coordinate system with the S, axis traversing the neutral
axis as shown. Positive deflections are measured normal

to the undeformed neutral axis in the direction of u,.

y ,%9

FIGURE 47 M neutral axis

centroidal axis
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From the derivation of the general case for a curved beam

. in pure bending (see Appendix A), the governing equation

for the deflection is

5 (R + uz)M

= - (43)
g RzEau

where
arc length

0
(S}
n

deflection normal to neutral axis

o
[ |8
!

M = moment

R = radius of curvature

E = modulus of elasticity

a = cross sectional area

distance between neutral axis and

centroidal axis and its value is
necessarily negative

i
i

The moment may be written as the product of the applied
load and the eccentricity, where the eccentricity in this
case consists of both geometry and deflection considerations.
At this point, it is appropriate to introduce
the notion of extensional effects. It is realized that
with the given loading conditions, the "joggle-joint" will
undergo deflections parallel to the neutral axis as well.
This fact would be of little concern if all beam segments
of the joint configuration had their neutral axis aligned
with the loading axis. If this were the case, the

longitudinal displacement would not affect the eccentricity.
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However, it is evident that the extensional strains in
the curved beam segments give rise to an added component

of eccentricity defined to be e . To calculate the

ext

value of €.yt One merely applies the criterion of

force equilibrium to SEG2 (Figure 47) in the local

coordinate system.

ZFuz = 0 Hzcose + V251ne = F
ZFSZ =0 H251ne = V2cose
thus H2 = Fcos®6
where 8 = angle subtended by SEG2

Employing the constitutive relationship
o = Ee
where 0 = stress
E = modulus of elasticity
€ = strain
and considering only the y (global coordinate) component
of the extension we thus arrive with the expression for

e

.

ext

e = Fszcos(sz/R)sin(sz/R)

akE :

ext

(44)

Eg. (44) must be added to the other terms which comprise

the eccentricity due to deflection.

Therefore Egq. (43) becomes
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2

d"u R-u
2 - 2)F
= - [e + e + e ] (45)
dsg RzEau geom defl ext
S, _
where egeom = R(l-cos (—ﬁ) + 1)

S2
e = u,cos8 (—=)
defl 2 R

oyt = Fszcos (sZ/R)sin (sz/R)
akE

Initial conditions for SEG2 are found by matching

deflection and slope at the 1-2 interface.

uz(o) = Uo

d

u
—aé (0) = u, v F/EI cosh F/EI 21
2

sinh F/EI 21

Using a numerical intégration routine to solve Eg. (45) the
deflection u, may be marched out as a function of arc length’
S,. A Runge-Kutta method based on Verners fifth and sixth
order pair of formulas was used. An explanation of the
integration routine DVERK may be referenced in Appendix C.
Figure 48 shows SEG3 modeled as a curved beam.

From Eg. (37) the governing differential equation for a

curved beam in pure bending is

(R+u3)

R%Eal

M (46)

F egeom * Cgef1 T eext)
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y centroidal
OXIS
neutral
axis 'WB
F
\")
FIGURE 48: SEG3 MODELED AS A CURVED BEAM ~‘9
M
Through geometric considerations egeom can be shown to be
_ = _ = LT s -
egeom = u + R(l-cosf) -2ucosb + RSln(z 6 + “3/R)=-cosb (47)
where 8 = angle subtended by SEG3
u = distance between centroidal and neutral
axes
R = radius of curvature
sy = arc length along neutral surface of
SEG3
Also C3ef1 = M cos(m/2 - 6 + s3/R) (48)
From a similar argument developed earlier it may
be shown that Coxt for SEG3 is given by
Caxt = Fs3cos(e-s3/R) sin (e—s3/R) (49)

ak

j B S

A\
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Thus Eq. (46) becomes

‘d%u
___% = '(gigi F (egeom *t Cgef1 Tt eext) (50)
ds3 REay
where egeom’ C3efl’ and Coyts are given by Egs. (47), (48),

and (49) respectively. Matching boundary conditions at the
2-3 interface provides initial conditions to Eg. (50) which
may be integrated numerically as before.

SEG4 is analyzed as a multi-layered beam and
shown in Figure 49. Treating this segment to be composed
of three linear elastic beam elements, the governing
differential equation follows from Eqg. (5) with a slight

modification.

2
d u4 M
= (51)
ds2 3 E.I
4 r Tivi
i=1
where Ii = moment of intertia of the ith section
about the neutral axis
Ei = modulus of elasticity of the ith element
3

z EiIi is referred to as an effective flexural stiffness
i=1

and is merely a constant. The moment is defined in the
usual manner as

M= F(egeom + edefl)
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FIGURE 50: SEG5 MODELED AS A STRAIGHT BEAM




~02-
where egeom = .5(t+b)
®def1 T Y4
Thus Eq. (51) becomes
d2u
4 _ F (.5(t+b) + ug)
= (52)
d52 3 E.I
4 5 ivi
i=1
Initial conditions are found by equating the deflection
and slope at the 3-4 interface. Following in the usual
manner, Eg. (52) is integrated to obtain an expression
for the deflection of SEG4 as a function of arc length
in the local coordinate system.
Finally SEG5 is shown in Figure 50 modeled as
a straight beam member. The governing differential
equation is the same as Eqg. (5)
2
d™u
5 _ M
5 = &7 (53)
ds5
where M = Fu5
and the initial conditions are obtained by matching the
deflection and slope at the 4-5 interface. Upon integration

of Eg. (53) the deflection SEG5 will be a known function of
the abscissa Sg of the local coordinate system. Therefore the
deflection and slope at point P of Figure 50 are also known.

But it should be apparent that the values of the deflection

% ‘
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and slope at this point must be zero or at least within
certain tolerance limits. This in fact is the final
boundary condition to the prpblem tﬁat is needed to uniquely
determine the value of u, which was previously assumed to

be arbitrary. Thus, through an iterative process, a

correct value of u, may be calculated by assuring that the
deflection and slope of point P of SEGS5 is sufficiently3
close to zero. To avoid confusion, it should be noted that
by specifying zero deflection at point P we will force

the slope to zero by the nature of the deflection function
of SEG5. So in fact this is a well-posed problem, whereby
we specify only enough boundary conditions as there are
unknowns. The process for c§rrectly determining u, is

shown schematically in Figure 51.

3it was found that reliable results were obtained by
using the tolerance limits listed here.

|deflection (P)| < .00001
|slope (P) | < .00005
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-94-

First lteration

r/// Tolerance

Limit \
I

Second lteration

Tolerance

Limit “\%
1 1

— T :

Third lteration
Tolerance

/ | Limit \T

1 1

FIGURE 51: ITERATIVE PROCESS FOR DETERMINING u,




Appendix C

Computer Programs

a. JOGGLE

To facilitate ease of calculation, a computer
routine identified as JOGGLE was developed and may be
referenced below. Essentially this program calculates a
correct value of u, and proceeds to determine a solution
for the deflection while calculating stress profiles
along the joint configuration. These stress profiles are
linear in the straight beam members (SEGl, SEG5) and

hyperbolic in the curved beams (SEG2, SEG3).

-95-
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ERR(1)=.00001

c- Jd 00000 GGGGG GGGGG L EEEEE
c- J 0 © G L E
c- J 0 O G GG G GG L EEE
C- J J 0 o0 G G G L E
c- JUdJdd 00000 GGGGG GGGGG LLLLt EEEEE ©
C. )
C-
C.
C.
C-
c.
c- ANALYTICAL BEAM BENDING MODZL
C- FOR A JOGGLE LAP JOINT
c-
C-
C- DEVELOPED BY: RICHARD C. GIVLER
c- UNIVERSITY OF DELAWARE
c- SEPT 78 - JAN 79
C-
C‘
c-
c-
SSET AUTOBIND
SRESET FREE
FILE 6(KIND=REMOTE.MAXRECSIZE=22)
DIMENSION PROD{3}. ERR(1). T{2). EI(3). YPRIME(2)
COMMON R, PLOAD. ESMC, WIQTH, THICK. YBAR. THETA. EADH, FI
-. BOND, J., TORC. TORCS. TRAC. TRACE, SHEAR :
C-
oo
C-vnmn- PARAMETERS AND NOMENCLATURE
C.
C-
C-----N IATERIAL THICKNESS
) THICK=.1 '
C-----LONGITUDINAL MODULUS OF ELASTICITY OF SMC IN PSI
ESNC=2.1E+086
C-ten- MODULUS . OF ELASTICITY OF "ADHESIVE IN FSI
EADH=1.QE+05
C--nn- LOAD IN LBS
PLOAD=200.
C-vn-- INSIDE RADIUS IN INCHES
RADI=2.5*THICK
C----- QUTSIDE RADIUS IN INCHES
RADO=3.5+THICK
C----- BONDING THICKNESS IN INCHES
BOND=.03
Covnvn CONTACT WIDTH IN INCHES
CONTA=1.0
C-vun- SPECIMEN WIDTH
WIDTH=1.Q
C--v-- LENGTH OF SEGMENT 1
SEGA=3.5
Ce---- LENGTH OF SEGMENT S
SEGB=4.0
C--n-- LEFT INTERVAL LIMIT FOR ITERATION
AINT=-.04
C--v-- RIGHT INTERVAL LIMIT FOR ITERATION
BINT=+.01
C----- TOLERANCE LIMIT ON INITIAL DISPLACEMENT

03000003
03000004
03000005
02000006
02000007
02000803
02000009
02000010
C2005011
02000015
CZ0CC018
03060020
03000021
€20000Cz4
63000023
02001026
clgoce27
63000028
€2000040
£2000041
clL000042
22000043
C300030G
G200C110
Caoe0i20
CZ0C0130
C3030178
CZ000176
£3020178
cooootgn
G3002200
C2000210
£o00C220
GSQC0200
€20004C0
C20C0500
CL0C0EC0
C2000700
[shsisviel=1nle}
€300090C
€2001:GR0
£so0v100
€20012G0
C2001300
Cz001400
C2001520
C3201600
CCn0t1700
C2C001800
C2001900
C&002000
CCoc2100
CC002200
€0002300
£CcoC2400
002420
€c002430
$0002435
£co02440
CCco02445
00002450
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C-vn-- STEP SIZE FOR NUMERICAL INTEGRATION

STEP=50.

P1=3.141592654
C-----TRACING CONSTANTS

TRAC=1.0

TRACE=1.0
C-nannu-
Coevmn NOTE:DEFLECTIONS ARE MEASURED NORMAL TO THE UNDEFQRMED
C- NEUTRAL AXIS
C-

YO=(AINT+BINT)/2.
Covmn- ITERATIVE CALCULATION OF YO TO FORCE ZERO DEFLECTION
C-vunn AND SLOPE AT END OF SEGS
Covnnn- YO MUST LIE BETWEEN THE PROPQSED LIMITS OF AINT AND BINT
C-
c.*#ﬂ*xt****Pa****x#*****w*t*v*‘*****W*xx**l****aw**u-*,w**v

C-*r!ﬂvm****l##*xx*t***i***x*sxr*#*ik4’*"*’****71#**77¥*1x1
C_t**tﬁ**!,*b’*n*i*****n;*f**YV!xi*k:x:t”r**‘rv«,tx*tx'tri/
C NUMERICAL INTEGRATION VIA LIBRARY ROUTINES DVERK AND UERTST
Cowvkwwr ke wsh s emkwavh®inms vk Y W o KRNk w d R e e o ek w R WK e e R kX
C-**itt!*****x***#x**tx#r*x*x******#*z*ixi:x****ﬁvl**i*a****
c-i*#*wi**swmw*ix*k;it*x**k*ix*vi***xxrk***w**tk*u#XX*i~#***
C-
101  CONTINUE
DO 200 X=0,SEGA+.005,SEGA/STEP
PROD(3)=SQRT(PLOAD/(ESMC* (WIDTH+THICK~ %3, /12 ) )}
PROD(1)=Y0*(.5*(EXP(PROD(3)*X)}-EXP({-PROD(3) ))
PROD(2)=.S*(EXP(PROD(3)"SEGA)- EXP(-PROD(3)’SEGA)
T{1)=PROD(1)/PROD(2)
T{2)=Y0*PROD({3}/PRODI(2)*( . 5*(EXP(PROD(3)*X)+EXP
-{-PROD(3)*X)))
200 CONTINUE
DIMENSION C(24), Y(2). W(2.9)
EXTERNAL FCN1

)

C-vm-e CALCULATION OF THE RADIUS OF CURVATURE FOR CURVED MEMBERS
R=WIDTH*THICK/(ALOG{RADO/RADI))
Nw=2
C----- CALCULATION OF THE ANGLE SUBTENDED BY SEG2 AND SEG3
THETA=ARCOS((5.*THICK-BOND) /(6. *THICK))
N=2
C-vun- CALCULATION OF THE DISTANCE BETwEEw NEUTRAL AXIS AND
C--v-- CENTROIDAL AXIS OF CURVED MEMBERS
YBAR=RADI+THICK/2.-R
X=0.0
Y(1)=-T(1)
Y(2)=-T{2)
TOL=.000001 ‘
IND=1

DO 300 Z=0.0,R*THETA+.001,R*THETA/STEP
XEND=FLOAT(2)
CALL DVERK(N,FCNt,X.Y ,XEND.TOL.IND.C.NW,W,IER)
IF(IND.LT.0.0R.IER.GT.0) GO TO 20
300 CONTINUE
20 CONTINUE

RINT=RNEW
EXTERNAL FCN2
X=0.0
Y(1)=-Y(1)
Y(2)=-Y(2)
Nw=2

N=2

021002451
05002452
02002473
03002500
C30C82501
02002562
€:2002800
030027Q0
03002800
0:0028C0
C200CZ000
03003100
0200232C0
02003210
03003220
0.0034C0
03002405
Q2003410
02063420
C1003425
02003430
€30C3435
03003440
02003445
3002450
€3004200
020043060
03004400
C20045G60
GJ004600
C2004700
02004800
©2005100
232006000
CI00G100
C3006150
C2008200
G20086300
Cz00&330
¢o0C8400
CO00ESCO
C3008550
CJ00ESS2
C20GE600
C20087C0
€2006800
CL008900
€2007000
€J007100
C30C72¢C0
C2007300
£3087400
Co0C7500
T2007800
€C200780¢C
€ 2007950
€2008€00
CCo08700
€o008720
£000€730
€2008800
€350083800
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IND=1
DO 250 M=1,24
Cimi=0.0
250 CONTINUE
DO 350 Z=0.0.R*THETA+.001,R*THETA/STEP
XEND=FLOAT(2Z)
CALL DVERK(N,FCN2.X.Y,XEND,TOL,IND,C,NW.W,IER)
IF(ING.LT.0.0R.IER.GT.0) GO 1O 70
350 CONTINUE
70 CCNTINUE
EXTERNAL ECN3
X=0.0
Nw=2
N=2
IND=1
DO 250 M=1,24
C(m)=0.0
290 CONTINUE
DO 400 Z=0.0.CONTA+,Q005.CONTA/STEP
XEND=FLOAT(Z)
CALL DVERK(N,FCN3.X.Y,XEND,TOL.IND,C.NW,W,IER)
. IF(IND.LT.0.0R.IER.GT.0) GO TG 8C
400 CONTINUE
80 CONTINUE
EXTERNAL FCN4
X=0.0
Nw=2
N=2
IND=1
DO 291 M=1,24
C{M)=C.0
291  CONTINUE
00 246 Z=0.0,SEGB+.005.SZGB/STEP
XEND=FLOAT(2)
CALL DVERK(N,FCN4,X.Y.XEND.TOL.IND.C.NW.W.IER)
IF(IND.LT.0.0R.1ER.GT.0) GO TO 81
246 CONTINMUE o
81 CONTINuUE
IF(ABS(Y(1)).LT.ERR(1)) GO TO 88
IF{Y{1).GT.0) GO TO 100
[F(Y(1}.LT.0) GO TC 89
100 CONTINUE
BINT=YO
YO={AINT+BINT)/2.
GO TO 101
89 CONTINUE
AINT=YO
YO=(AINT+BINT /2.
GO T0 101 -
88 - CONTINUE ‘
(ol R L T T R L R R L R e
C-Faknsmker buw ph b rka e R ARy AR KN ox KRR A S X F AT L & kh Rk don ® £ xw o a gk R
c-*x**:&*i***lr**#xt:**t*»xxxak#*****t**r*xatx**ixxrx*rxtw*wr

C-

C-----CALCULATION OF DEFLECTION AND SLOPE AS A FUNCTION
C- OF X FOR SEGMENT 1.
C.

WRITE({6.500) YO
500 FORMAT(//////////.10X.7Y¥0=' F14.11,)
WRITE(6,501)
501 FORMAT(%--c--un-- e eeeeeeeceeceeeeclaaaaaaes )
, WRITE(6.502) -

Q200CeCC0
CI00%1C0
0-200€200
020083200
03009400
03009500
C2009600
03009700
22010C00
02010100
£2011000

23011100
G50112C0
02011200
03011400
02011500
030116C0
C2011700
C2011800
(3011960
02012000
JJ012100

Q30124C0

03012500
03013400
GZ013500
€o012600
03013700
03012800
€3013200
02014C00
CI0t14100
0230142C0
02014300
0201424380
C1012500
C3014800
C2014200
CIiN14951
C3014962
C201438¢3
C015C00
0015073
C2915076
C2015077
£2015880
£3015085
£2015C86
C3015087
G2015069¢
Ccl018C20
Cc3016C30
CIN1EQ40
61024000
02024106
£3024200
€r024a2300
€2624400
G2024200
C20248350
$2024700
€2024800
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502 FORMAT(/ =omcmcmemnncteae o imaeaiem e accaaaaannn ")

WRITE(6.2)
2 FORMAT{(/////.' DEFLECTION AND SLOPE FOR SEGMENT 1’,//)
WRITE(G.9)

9 FORMAT(10X,'X DISTANCE’.5X,’DEFLECTION’,7X,’SLOPE’, 9%, ' STRESS'
- .BX,'NMOMENT’.,//) >
JW=0 '
DO 505 Xx=0.0.3EGA+.C05.SEGA/STEP
PROD(3)=SQRT{PLOAD/(ESMC- {WIDTH-THICK=+3./12.)))
PRODI(1)=Y0*“(.5-(EXP(PRODI3)*X)-EXP{-2ROD(3)-X)))
PROD(2)=.5%(EXP(PROD(3)*SEGA)-EXP(-PROD(3)*SEGA))
Ti1)=PROD(1)/PROD{2)
T(2)=Y0" PROD(3)/PROD{2)*(.5*(EXP(PROD(3)*X)+EXP
-(-PROD(3)7X)})

C--n-- CALCULATION OF TOP AND BOTTOM FIBER STRESSES

SIGT=-PLOAD*T(1)*THICK/2./(1./12."WIDTH*THICK**3)+PLOAD/
- (WIDTH" THICK)
S1GB=PLOAD*T(1)*THICK/2./(1./12 . ~WICTH*THICK*~31+PLOAD/
- (WIDTH*THICK)
J=UW+2
IF(INT(J/2).NE.J/2.0) GO TO 199
WRITE(6.10) X. T{1). T(2). SIGT. PLOAD*T(1)

10 . FORMAT{1OX.5(E11.4.3X))
WRITE(6.11) SIGB

11 FORMAT(52X.E11.4.//)

199  JwW=uwW+1
505 .CONTINUE

C-
R CALCULATION OF DEFLECTION AND SLOPE AS A FUNCTION
c- OF ARC LENGTH F"™R SEGMENT 2
o
WRITE(G, 24)
24 FORMAT(/////.' DEFLECTION AND SLOPE FOR SEGMENT 2'.//)
v WRITE(6,25)
25 FORMAT(10X,'ARC LENGTH'.S5X,'DEFLECTION’,7X,'SLOPE’ 10X.’STRESS"
<, 12X, ’MOMENT' 11X, 'SHEAR' .//)
EXTERNAL FCN1 .
R=WIDTH-THICK/(ALOG(RADO/RADI))
Nw=2 . :
THETA=ARCOS((5.*THICK-BOND)/(6.*THICK})
N=2
YBAR=RADI+THICK/2.-R
X=0.0
Y(1)=-T(1)
Y{2)=-T(2)
TOL=.000001
IND=1
J=0
DO 510 Z2=0.0,R+“THETA+.001 R*THETA/STEP
XEND=FLOAT(Z)
CALL DVERK(N.FCN1 ,X.,Y,XEND.TOL.IND.C.NW,W.I2ER)
IF(IND.LY.C.OR.IER.GT.0) GO TO 511 ’
JW=U+10
IF(INT(JUW/10) .NE.JW/10.0) GO TO 299
WRITE(6,30) X.Y{1}.Y(2), TORC, SHEAR
30 FORMAT(10X.3(E11.4.3X),20X.E11.4.5X.E11.4,/)
YGLOB=-.5*THICK
DO 660 H=-(RADO-R}.R-RADI.THICK/10.
C--ven-- STRESSES FROM THE MOMENT DISTRIBUTION SUPERIMPOSED
C----- ON TENSILE STRESSES AS A FUNCTION OF BEAM THICKNESS

AREA=WIDTH*THICK
BSIGX=TORC*H/( (R-H)*WIDTH«THICK>YBAR)+PLOAD*COS(X/R) /AREA

62024900
02025600
07023100
03025200
CI0258300
02025400
021025500
03025600
03025700
03023200
03025900
¢2026000
0)J026100
GJ026200
3025220
050262590
07026251
02026252
02026233
02025300
02028400
03026500
0202€E6C0
C 1026850
2026860
CI026700
¢ 2026800
52026900
02027600
02C27100
3027200
C3027300
32027400
02027500
C2027630
5027700
02027800
5028000
£2028109
¢3028200C
C20258300
Cz0z8400
¢3028500
€2028690
2028789
£2028%00
2024060
2029100
€2029260
C502%300
£0028400
€00235090
00296060
Co029709
€002%800
C5029900
C5029540
5028950
£0029985
C0029957
€0029959
CO029%€0
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WRITE(S.600) YGLOB., BSIGX
FORMAT(52X,F4.2,1X.E11.4)
YGLOB=YGLOB+THICK/10,
CONTINUE

Jd=d+1

CONTINUE

CONTINUE

CALCULATION OF DEFLECTION AND SLOPE FOR SEGMENT 3
AS A FUNCTION C- ARC LENGTH

WRITE(6.27)

FORMAT(/////.' DEFLECTION AND SLOPE FOR SEGMENT 3’.//)
WRITE(6.26)

FGRMAT(10X.’ARC LENGTH’.5X, DEFLECTION’,7X, SLOPE’ 10X, ' STRESS'
12X, 'MOMENT! 11X, /SHEAR' .//)

EXTERNAL FCN2

X=0.0

Y(1)=-Y(1)

Y(2)=-Y{2)

Nw=2

N=2

IND=1

"DO 515 M=1.24

515

CimM)=0.0

CONTINUE

J=0

CO 520 Z=0.0.R~THETA+.001 ,R=THETA/STEP
XEND=FLOAT(2Z)

CALL DVERK(N,FCN2.X.Y,XEND.TOL,IND.C.NW,W,.IER)
IF(IND.LT.O0.0R.IER.GT.0) GO TO 525

Jw=dJd+10 -

IFCINT(JUW/10) .NE.JW/10.0) GO TO 349

WRITE(6.60) X. Y(1), Y(2)., TCRCS. SHEAR
FORMAT({10X.,3(E1:.4.3X).20X.E11.4.5X.E11.,4,/)
YGLOB=-.5*THICK

DO 770 H=-(RADO-R).R-RAD!.THICK/10.

STRESSES FROM THE MOMENT DISTRIBUTION SUPERIMPGSED
ON TENSILE STRESSES AS A FUNCTION OF BEAM THICKNESS
CSIGX=-TORCS"H/((R-H)*WIDTH*THICK*YBAR)+PLOAD~COS(THETA-X/R)/
(WIDTH*THICK) [

WRITE(6,700) YGLOB. CSIGX
FORMAT(S2X,F4.2.1X.E11.4)

YGLOB=YGLOB+THICK/10.

CONTINUE

J=d+1t

CONTINUE

CONTINUE

CALCULATION OF DEFLECTION AND SLOPE AS A FUNCTION
OF X FOR SEGMENT 4

WRITE(G, 28)

FORMAT(/////.' DEFLECTION AND SLOPE FOR SEGMENT 4’.,//)
WRITE(6.29)

FORMAT(10X,’X DISTANCE’.5X,/DEFLECTION’,7X,’SLOPE’,//)
EXTERNAL FCN3

X=0.0

NW=2

N=2

IND=1

DO 530 m=1,24

[eNeReRe]
WY
OO0 02
NN O

oy
(o]
[
@

020300320
¢20301C0
(2030200
0:3030200
G0230400
02030300
02030600
03030700
0030800
010308C0
03031000
0021100
0031260
C3031300
02031400
2031500
03031700
031800
03031260
Q2032C00
0032100
62032200
2032300
€3032400C
¢2032560
CJ032G600
02032700
02032800
C1032s800
C3033000
220331C0
C3033140
C2033150
C2033155
C2033157
C230331860
Gu033186!

C2033162
C2033164
€033168
€033168
¢30322%¢C
€Z0332C0
Co0334CC
CZ033€00
€2033780
€2033800
€203Z%00
€3034C800
T3034160
coo34zc2
CJ0343Q0
C2034400
Cl034500C
C034€800
C3034700
cos034800
£3034900
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CiM}=0.0

530 CONTINUE
J=0
DO S35 Z=0.0.CONTA+.005,CONTA/STEP
XEND=FLOATI(2Z)
CALL DVERK(N.FCN3.X.Y . XEND.TOL.IND.C,NW.W,.IER)
IF(IND.LT.0.0R.IER.GT.0) GO TO 540
JW=d+10
IFCINTIJW/10) . NE.JW/10.0) GO TO 399
WRITE(G6.682) X, Y(1). Y(2)

62 FORMAT(10X,3(€11.4.3X)./)

399 ‘J=d+!
535 CONTINUE
540 CONTINUE
c-
C----- CALCULATION OF DEFLECTION AND SLOPE AS A FUNCTION OF
c- X FOR SEGMENT 5
c-

WRITE(G,31)
31 FORMAT(/////.' DEFLECTION AND SLOPE FOR SEGMENT 57 .//)
WRITE(G.32)
32 FORMAT(10X.’X DISTANCE’,S5X,’DEFLECTION’,7X.’SLOPE’,10X.’STRESS’
- 12X, "MGMENT? L / /)
EXTERNAL FCN4
xX=0.0
HW=2
N=2
IND=1
DO 545 M=1,24
CimM)=0.0
545 CONTINUE
J=0
DO 550 Z=0.0,SEGB+.005,ScGB/STEP
XEND=FLOAT(Z)
CALL DVERK(N.FCN4.X.Y XEND,TOL.IND.C.NW,W,IER)
IF(IND.LT.O0.CR.IER.GT.Q) GO TO 555
JW=J+10
IF(X.EQ..15) GO TO 244
IFLINT(JW/10)  NE.UW/10.0) GO TO 245
244 WRITE(B.B65) X, Y(1). Y{2). PLQAD*Y(1)
65 FORMAT(10X.3(E11.4,3X).20%X,.E11.4./)
00 8B0 H=-THICK/2..THICK/2..THICK/10.
C----- STRESSES FROM THE MOMENT CISTRIBUTION SUPERIMPCSED
C-v--- CN TENSILE STRESSES AS A FUNCTION OF BEAM THICKNESS
ESIGX=-PLOAD*Y (1) H/(1./12 . *WIDTH*THICK**3)+PLOAD/ (WIDTH*THICK)
WRITE(6.800) H, ESIGX
800 FORMAT(52X,F4.2,1X,E11.4)
880 CONTINUE
245 J=J+i
550 CONTINUE
555 CONTINUE
STOP
. END

Coakroaek s Rk Fokx ko kR ok hm ok kR e v XA Ed o HRRF AR RFF T R kKA e K KL ¥ > ko F R
C-*i*?******li***********y**t**y**i:'ﬂar*i"(Kl,****Atak***'*#***
C-wvxx SUBROUTINES ‘ o
C-**#***#**********t**i**i**!*4********’****i*******ﬁ**'***
Cookkmdor ko ko ko kK e o R kK W kK w ok kR MK KRS Kk ¥ R R KW R w KKK ¥ kX
C-

C-----NUMERICAL INTEGRATION OF SEG2

SUBROUTINE FCN1(N.X.Y,YPRIME)

€2035000
G230351CQ0
02038200
02033300
03035400
02035500
3035800
03035700
03038890
0023900
030380060
02038100
Q2538220
CJ036300
Go0304ns
02038500
03039500
023026700
01C26800
¢3026900
C:30370C0
020371C0

$l037150 -

023037200
0302373C0
C2037400
G2037500
C3037600
C30377C0
03037800
020272C0
02038000
03038100
2038200
¢l0383C0
C2038400
02038500
C3038550
C>03€E8600
CZ0Z870C0C
¢203&e8CC
cx03ee40
C203E68s

C3038855
£203€e260
C3032880
€203s8¢0
C0ZzE9s5
co038%900
€2033000
02032100
©3032230C0
G3039420
€303941¢
£3039420
€2032430
£2039440
C203%450
€303848e0
C3038470
€s0294890
€2039500
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COMMON R. PLOAD, ESMC, WIDTH. THICK. YBAR, THETA. EADH., PI 07032600

-. BOND. J. TORC, TGRCS. TRAC. TRACE. SHEAR 02935700
DIMENSION Y(2). YPRIME(2) 7030800
YPRIME(1)=Y(2) 0038200

c- 01039950
Cennn- ECCENTRICITY DUE ONLY TO EXTENSICNAL EFFECTS ~ . 01039855
c- . 03032950
YECC=PLOAD*X“COS(X/R)*SIN(X/R)/(WIDTH~ THICK~ ESMC) 0504GCC0
TORC=PLOAD*(YECC*TRAC+YBAR+R* (1. -COS{X/R))-Y{1)7COS(X/R)) 03040100
SHEAR=PLOAD* (PLOAD/ (WIDTH* THICK”ESHC) * (X/R7COS(X/R)**2 07040150
“+SIN(X/R)*(X/R=(-SIN{X/R}}+CCS{X/R) ) J+SIN(X/R)+Y(1}/R 0304C150
-*SIN(X/R)) . 03040170

560 YPRIME(2)=(R+Y{1))#TORC/(R**2.#ESMC*WIDTH-THICK~YBAR) 01040500
RETURN 03040600

END 030434700

c- 0040750
Covn-- NUMERICAL INTEGRATION OF SEG3 03040755
c- 03040760
SUBROUTINE FCN2(N.X.Y,YPRIME) 03040800
COMMGN R, PLOAD, ESMC. WIDTH, THICK. YBAR., THETA. EADH. PI 03040900

-, BOND. J, TORC. TORCS, TRAC, TRACE. SHEAR 03041000
DIMENSION Y(2), YPRIME(2) 03941100
CYPRIME(1)=Y(2) 63041200

c- : 03041250
Ce-nnn- ECCENTRICITY DUE TO GEOMETRY 03041260
c- 023041270
AEGEO=YBAR+R*(1.-COS(THETA))-2.-YBAR-COS(THETA) ©3041200

c- . 02041350
C----- ECCENTRICITY DUE TO GEOMETRY 02041360
c- 03041370
SEGEO=R“ (SIN(X/R+PI/2.-THETA)-SIN(PI/2 -THETA)) 02041400

c- 03041450
C-----ECCENTRICITY DUE ONLY TO EXTENSIONAL EFFECTS 02041460
c- 02041470
EEXT=PLOAD*(SIN(P1/2.-THETA+X/R) J~SIN(THETA-X/R} X/ ( 03041550

_ ~W IDTH"THICK*ESMC) G104 1850
c- , C2041650
C-nn-- ECCENTRICITY DUE TO DEFLECTION €3041580
c-- ~ CI041670
EDEFL=Y{1)*CCSi{THETA- X /R cLo4170n
TORCS=FLOAD* ( AEGEC+BECLO+EDEFL+EEXT " TRACE) C3041€00
SHEAR=PLOAD" (COS(X/R+PI/2. -THETA) -Y(1)/R*SIN(PI/2. C2041850

-~ THETA+X/R)+PLOAD* ((SIN(PI/2.-THETA+X/R) )~ i SIN(THETA- C2041280
“X/R) /(W {DTH*THICKESMC)-X/(WIDTH- THICK*R=ESMC}*COS £1241870
~(THETA-X/R))+X/(WIDTH*THICK*ESMC-R)“SIN(THETA-X/R) L 2041880
-*COS(PI/2.-THETA+X/R))) CZ041830
YPRIME(2)=(R+Y{1))~TORCS/(R**2.ESMC*WIDTH~THICK*YBAR) 02022000
RETURN £5042100

END £50622¢C0

c- £7042280
(R NUMERICAL INTEGRATION OF SEG4 £23042260
c- €0042270
SUBROUTINE FCN3{(N.X.Y.YPRIME) £0042300
COMMON R, PLOAD. ESMC., WIODTH, THICK, YBAR, THETA, EACH. PI £00424200

-. BOND €0042500
DIMENSION Y(2). YPRIME(2). EI(3) ; C0042600
EI(1)=ESMC*(1./12.THICK** 3. vWIDTH+WIDTH4THICK*(.S*THICK+BOND . (0042700
=/2.)%%2.) . £0042800
EI(2)=EADH*1./12.*THICK*“3*WIDTH €G042900
EI(3)=ESMC*(1./12. *WIDTH*THICK**3+WIDTH*THICK* ( .5+ THICK+BOND/ £0043060
-2.1%%2.) CC043100

YPRIME(1)=Y(2) €C043200
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DEN=EI(1}+EI(2)+EI(3) 03042360
YPRIME(2)=PLOAD* (.57 THICK+BCOND/2.+Y(1))/DEN 2504z40C
RETURN : 03043200

END G2042800

C- ¢ 304Z2650
----- NUMERICAL INTEGRATION OF SEGS 03C425€0
c- Q3043870
SUBROUTINE FCN4(N.X.Y,YPRIME) 030437C2
COMMON R. PLOAD. ESMC. WIDTH. THICK. YBAR., THETA, EADH., PI ¢3042800

-. BOND ¢204:300
DIMENSION Y(2). YPRIME(2) 02042000
YPRIME(1)=Y(2) CJ044100
YPRIME(2y=PLOAD*(Y(1))/(ESMC*WIDTH*THICK**3./12.) 03044200
RETURN 03044300

END 62044400
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b. CONVERT
The program CONVERT essentially performs the

tedious calculations involved in computing the boundary
conditions for the finite-element model. Stresses dictated
by the beam bending model are converted to equivalent point
forces which are then applied to the finely meshed ends of
the finite-element structure. In converting the stress
distribution from deformed to undeformed geometry the
program insures that the model be maintained in equilibrium
through the introduction of a correcting moment.

The important parameters utilized in the routine
are defined in the nomenclature section of the program.
Frequent comment cards are intended to assist the user

in the utilization of the program.
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c- CCCCC 00000
c- c 0o o0 N

N EEEEE RRRRR TTT7T
N
Cc- c 0 0 N N
N
N

E R R
EEE RRRRR
v v E R R

v EEEEE R R

<< <
<< <

c- C 0 o}
c- ccece 00000
c-
C-
C-
C-
c-
c-
c- STRESS TRANSFORMATION PROGRAM
c-
c- DEVELOPED BY: RICHARD C. GIVLER
c- UNIVERSITY OF DELAWARE
c- OCT 78 - JAN 79
c-
c-
c-
c-
c.
c-
C-
C.
SRESET FREE
DIMENSION ZOM(S). RES{5), PART(4), ZOMX({S5;, RESB(S)
-. RESX(5), RESY(5). ZOMA(5), ZOMB(5). BMOM(5), ZOMXB(S)
-. RESXB(S), RESYB(S)

N

zZzzzzZz
-t

c.

Comvew- PARAMETERS AND NOMENCLATURE

C.

Comvnn- MATERIAL THICKNESS
THICK=.1

Crvwamnre MATERIAL WIDTH
WIDTH=1.

Commnnn ROTATION OF LEFT HAND FACE FROM UNCEFORMED GEOMETRY (RAD)
DUDSA=-, 01642

Covann- ROTATION OF RIGHT HAND FACE FROM UNDEFORMED GEOMETRY (RAD)
DUDSB=.008420

Covvn-- TOTAL MOMENT ON LEFT HAND FACE (IN. LBS.)

: TOTMOA=10.64
C--ewn-- SHEAR ON LEFT HAND FACE
-~ SHEARA=132.6

Crvecwn TOTAL MOMENT ON RIGHT HAND FACE (IN. LBS.)
TOTMOB=-1.968
AREA=WIDTH*THICK

Cevonnn OUTSIDE RADIUS IN INCHES
RADO=3.5*THICK

Cremnnn INSIDE RADIUS Iw INCHES
RADI=2.5+THICK

Cr-even- RADIUS OF CURVATURE OF CURVED MEMBERS
_R=WIDTH” THICK/ (ALOG(RADO/RADI)) '

Cocenne DIFFERENCE BETWEEN NEUTRAL AXIS AND CENTROIDAL AXIS (IN.)
YBAR=RADI+THICK/2.-R

Coevenn ADHESIVE BOND THICKNESS IN INCHES
BOND=.03 :

C------ANGLE SUBTENDED BY CURVED MEMBERS IN RADIANS
THETA=ARCOS( (5. *THICK-BOND ) /(6. * THICK) ) '

Covvnnn TENSILE LOAD
PLOAD=200. _

c.

00000004
00000005
02000008
00000007
02000008
03000010
05000011
00000012
Co000013
G0000014
020000185
020000186
G3000017
00000018
00000019
€2000020
C3000030
C0000031
05000032
02000033
02000034
GJ0C0035

030000386
C2000037
03000100
02000200
03000300
02000400
02000420
02000430
Q3000440
€2000470
02000500
C5000550

' 000008600

©D000650
C3000700
C2000750
02000800
C3000850
¢2000900
0000Ce25
02000950
GJ200G6275
03001000
¢2001100
Go001130

.€0001200

C3001250
05001300
€2001350
02001400
00001450
€200150C0
C0001550
C0001600
000018650
G2001700
00001750
€0001800
€o001850
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C-vvvn-n NOTE: DEFLECTIONS ARE MEASURED NORMAL TO THE NEUTRAL AXIS

c-
C-vvwn-- DEFLECTION OF LEFT HAND FACE (IN.)

DEFLA=-.01547
Covvnm-- DEFLECTION OF RIGHT HAND FACE (IN.)

DEFLB=-.007872 -
Cecanua '

C-vnnnu-

C--nn-- CALCULATION OF RESULTANT POINT FORCES FROM THE
Coeenn ~STRESS DISTRIBUTION

Covnen-

H=R-RADI
DO 100 N=1.5
PART(1)=TOTMOA/(YBAR*AREA)*{R-H-R*ALOG(R-H))
-+PLOAD/AREA+COS(THETA+DUDSA) *H
H=H-.02 .
., PART(2)}=TOTMOA/(YBAR*AREA)*(R-H-R*ALOG(R-H))
~+PLOAD/AREA*COS(THETA+DUDSA ) *H
. RES(N)=PART(1)-PART(2)
100 CONTINUE

Crvounus

g';""CALCULATION OF ACTUAL MOMENTS FROM THE STRESS DISTRIBUTION
H=R-RADI
DO 200 N=1.5
PART(3)=TOTMOA/(YBAR*AREA)*(-1.)"(.5*(R-H)**2-2.*R*(R-H)+R**2
-*ALOG(R-H) )+ .5*PLOAD/AREA*COS(THETA+DUDSA ) ¥H**2
H=H-.02 '
PART(4)=TOTMOA/(YBAR*AREA)*(-1.)*( .5*(R-H)**2-2.*R*(R-H)+R**2
=*ALOG(R-H))+.5¥PLOAD/AREA*COS(THETA+DUDSA) *H**2
ZOM(N)=PART(3)-PART(4)

200 CONTINUE
Covmmnn _ :
. €C+-----CALCULATION OF CORRECTION MOMENT OUE TO THE

Covvnvws REPRESENTATION OF THE STRESS DISTRIBUTION 8Y POINT

Cevvnn- FORCES . ' )

Ce-vu--
H=R-RADI - .01
DO 300 N=1.,5
ZOMX(N}=ZOM(N)-RES(N)*H
H:H‘.02

300 CONTINUE

Ceovvnws CALCULATION OF MOMENT DUE TO TRANSLATION OF THE STRESS

Cevvwm-- DISTRIBUTION THROUGH SPACE FROM THE DEFORMED GEOMETRY

g """" TO THE UNDEFORMED GEOMETRY '

Covcomnn .

Covnnn- CALCULATION OF MOMX FOR INPUT INTO THE FINITE ELEMENT

Covonn- MODEL

Covvnne

H=R~RADI-.01

DO 400 N=1.,5
ZOMA(N)=-RES(N)*({H+DEFLA)*COS{DUDSA) -H)
ZOMX(N)=ZOMX(N)+ZOMA(N)

H=H-.02

00001852
007001854
00001870
03001900
02001970
0060902000
00002010
00002020
00002100
03002200
00002300
02002320
025002400
03002500
03002600
00002700
06002800
00002900
020023000
00003100
00003200
00003300
02003400
05003500
02003600
00003800
030033800
0:3004000
00004100
02004200
02004300
€2004400
00004600
02004700
€23004800
00004900
02005000
03005200
Q0005300
02005400
00005500
02005600
00005700
[ofe]elo}-1:10]0]
00005900
Q0008000
00006200
C0006300
CD006400
C0006500
€d006600
C00C6700
€Ccoose800
00006900
Co007000
G0007100
00007200
C0007300
C0007400
CG0007500
C0007700
¢0007900
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400 CONTINUE
------ CALCULATION OF FY AND FZ FOR INPUT INTO THE FINITE
------ ELEMENT MODEL

WRITE(G.25)

25 FORMAT(///////.6X.'BOUNDARY CONDITIONS FOR LEFT HAND SEGMENT’

WRITE(6.30)

30 FORMAT(/,4X, 'NODE’.6X,'FY’ 13X, /FZ' . 12X,'MONMX"' .//)
DO 500 N=1.5
RESX{N)=-RES(N)*COS( THETA+DUDSA) - SHEARA/S.*SIN(THETA)
RESY(N)=-RES(N}*SIN(THETA+DUDSA)+SHEARA/S.*COS(THETA)
WRITE(G.2) N. RESX(N), RESY(N), -ZOMX({N)

2 FORMAT(5X.F2.0,3X.3{E10.4.5X}./)
500 CONTINUE

""" CALCULATION OF RESULTANT POINT FORCES FROM THE STRESS
""" DISTRIBUTION

H=THICK/2.

DO 1000 N=t1.5

PART(1)='.5’TOTMOB*H**2/(1./12:*WIDTH‘THICK**3)+PLOAD/AREA*H

H=H-.02

PART(2)=-.5*TOTMOB*H**2/(1, /12 . *WIDTH*THICK**3)+PLOAD/AREA*H

RESB(N)=PART(1)-PART(2)
1000 CONTINUE
------ CALCULATION OF ACTUAL MOMENTS FROM THE STRESS
------ DISTRIBUTION
H=THICK/2.
DO t100 N=1.,5 IS
PART(3)=1./3.7(TOTMOB)*H**3/(1./12.*WIDTH*THICK**3)
- . 5*PLOAD/AREA*H**2
H=H-.02
PART(4)=1./3.*(TOTMOB)*H**3/(1./12. *WIDTH*THICK**3)
- .5*PLOAD/AREA*H*~2
EMOM(N)=PART(3)-PART(4)
1100 CONTINUE
------ CALCULATION OF CORRECTION MOMENT DUE TO THE
------ REPRESENTATION OF THE STRESS DISTRIBUTION BY POINT
------ FORCES
H=THICK/2.-.01
DO 1200 N=1.5
ZOMXB(N)-BMOM(N)+RESB(N)*H
H=H-.02
1200 CONTINUE
------ CALCULATION OF THE MOMENT DUE TO TRANSLATING THE STRESS
------ DISTRIBUTION FROM DEFORMED TO UNDEFORMED GEOMETRY

......

/)

02008C00
03008100
03008200
00008300
03008400
00008500
00008600
02008700
023008800
05008900
03009CC0
03009100
02009200
02009300
000094900
00009500
03008600
03088700
03009800
02009900
00016000
62010100
03010200
03010300
03010400
02010500
€2010600
¢3010700
60010800
03010900
00011000
02011100
00011200
02011300
C3011500
C0011600
00011700
05011800
05011900
00012000
C2012100
€2012200
C2012300
€2012350
C2012400
02012500
€C5012800
€0012800
02012900
€2013C00
C2013100
00013200
C2013300
T0013400

‘©C013500

C2013600
00013750
€2013800
00013800
€Q014000
C0014100
€C0014200




....
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-CALCULATION OF MOMENT MX FOR INPUT INTO THE FINITE
-ELEMENT MODEL

H=THICK/2.-.01

DO 1300 N=1.,5

ZOMB(N}=RESB(N)*( (H-DEFLB)*COS(DUDSB)-H)
ZOMXB(N)=ZOMXB(N)+ZOMB(N)

H=H-.02

CONTINUE

-CALCULATION OF FY AND FZ FOR INPUT INTO THE FINITE
-ELEMENT MODBEL .

WRITE(6,40)

FORMAT(//////.10X., ' BONDARY CONDITIONS FOR SEGB’,/)
WRITE(G,45)

FORMAT(/,4X, ‘NODE’ ,6X,FY' 13X, 'FZ', 12X, 'MOMX’',//)
DO 1400 N=1.5

RESXB(N)=RESB(N)}*COS(DUDSB)
RESYB(N)=RESB(N)}*SIN(DUDSB)

WRITE(6,20) N, RESXB(N), RESYB(N). ZOMXB(N)
FORMAT(5X,F2.0,3X,3(E10.4.5X)./)

CONTINUE -

END

00014200
00014400
000145G0
00014600
00014700
00014800
00014800
00015100
00015200
00015300
00015400
05015500
00015600
00015700
02015800
02015900
03016000
03016100
00016200
¢2016300
03016400
03016500

03016600

030186700
00016800
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SUBROUTINE DVERK

FUNCTION

USAGE
PARAMETERS

N
FCN

XEND

TOL
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(N,FCN.X,Y.XEND.TOL,IND.C.NW.W.1ER)

+

SOLUTION OF A SYSTEM OF FIRST ORDER ORDINARY

DIFFERENTIAL EQUATIONS OF THE FORM

DY/DX = F{X.Y) WITH INITIAL CONDITIONS.

A RUNGE-KUTTA METHOD BASED ON VERNERS FIFTH
AND SIXTH ORDER PAIR OF FCRMULAS 1S USED.
CALL DVERK(N.FCN.X,Y ,XEND,TOL,IND.C.NW,W.IER)

NUMBER OF EQUATIONS. {INPUT)
NAME OF SUBROUTINE FOR EVALUATING FUNCTIONS.

(INPUT)

THE SUBROUTINE ITSELF MUST ALSO BE PROVIDED
BY THE USER AND IT SHOULD BE OF THE
FOLLOWING FCRM

SUBRCUTINE FCN(N,X.,Y.YPRIME)
DIMENSION Y({N) . YPRIME(N)

FCN SHOULD EVALUATE YPRIME(1)..... YPRIME(N)
GIVEN N,X, AND Y(1),.... YIN). YPRIME(I)
IS THE FIRST DERIVATIVE CF Y(I) WITH
RESPECT TO X.

FCN MUST APPEAR IN AN EXTERNAL STATEMENT IN
THE CALLING PROGRAM AND N.X,Y(1),....Y(N)
MUST NOT BE ALTERED BY FCN.

INDEPENDENT VARIABLE. (INPUT AND OUTPUT)

ON INPUT. X SUPPLIES THE INITIAL VALUE.

ON QUTPUT. X IS REPLACED WITH XEND UNLESS
ERROR CONDITIONS ARISE. SEE THE DES-
CRIPTION OF PARAMETER IND.

DEPENDENT VARIABLES, VECTOR OF LENGTH N.
(INPUT AND QUTPUT)
ON INPUT, Y(1)....

VALUES.

ON OQUTPUT. Y(1)..... Y{N) ARE REPLACED WITH
AN APPROXIMATE SOLUTION AT XENC UNLESS
ERROR CONDITIONS ARISE. SEE THE DES-
CRIPTICON OF PARAMETER IND.

VALUE OF X AT WHICH SOLUTIGON 1S DESIRED.
(INPUT)

XEND MAY BE LESS THAN THE INITIAL VALUE OF
X.

TOLERANCE FOR ERROR CONTROL. (INPUT)

THE SUBROUTINE ATTEMPTS TO CCNTROL A& NORM
OF THE LOCAL ERROR IN SUCH A WAY THAT THE
GLOBAL ERROR IS PROPORTIONAL TO TOL.
MAKING TOL SMALLER [MPROVES ACCURACY AND
MORE THAN ONE RUN, WITH DIFFEREMT VALUES
OF TOL, CAN BE USED IN AN ATTEMFT TO
ESTIMATE THE GLOEAL ERROR.

IN THE DEFAULT CASE (IND=1), THE GLOBAL .
ERROR IS

MAX(ABS(E(1))....,ABSIE(N})) ~
WHERE E(K)=(Y(K)-YT(K))/MAX(1,ABS(Y(K)))
YT(K) IS THE TRUE SOLUTION, AND
Y(K) IS THE COMFUTED SCLUTION AT XEND.
FOR K=1,2.....N,
OTHER ERROR CONTROL OPTIONS ARE AVAILABLE.

VYIN) SUPPLY INITIAL

S/EKCO10
DVEKQO20
DVEKQO30
DVEKCC4Q
DVEKCOSO
DVEKOOB0
DVEKCQO70
DVEKOO30
DJVEKGOS0
CVEKO100
DVEKO110
DVEKO120
CVEKO130
CvERO140
CVEKQ150
CVEKO160
CvEKO170
DVEKO180
DVEKO1390
CVEKO200
DVEKC210

CVEKC220

CVEKO230
CVEK0240
LVEK0250
CVEKQ280
CVEKQ270
CVEKC280
DVEKG2E0
OVEKO300
CVEKQO310
CVEKO320
CvEKQ330C
CVvEXQ340
CVEKO350
CVEKQZ60
CVEKO370
CVEKC380
CVEKO390
CVEKT4C0
CVEKQS10
CVEKD420
CVEKQA30
CVvEKC440
CVvEKQ430
CVEKDLE0
CVEKTAT0
CVEKC4E80
CVvEKQ480
CVEKCS00
CVvEKCS10
CVEKQE20
CVEKOS30
CvEKQS40
CVEKOSSQ
CVEKOSEQ
CVYEKQ570
CVEKOSGO
CVEKOS

_VEKCGOO
CVEKOB10
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SEE THE DESCRIPTION OF PARAMETERS IND AND
C BELOW.

INGICATOR. (INPUT AND QUTPUT)
ON INITIAL ENTRY IND MUST BE SET EQUAL TO
EITHER 1 OR 2.
IND = | CAUSES ALL DEFAULT OPTIONS TO BE

USED AND ELIMINATES THE NEED TO SET
SPECIFIC VALUES IN THE COMMUNICATIONS
VECTOR C.

IND = 2 ALLOWS CPTIONS 7O BE SELECTED. IN

THIS CASE. THE FIRST 9 CCMPOMNENTS CF C
MUST BE INITIALIZED TO SELECT QOPTIONS AS
DESCRIBED BELOW.

THE SUBRCUTINE WILL NORMALLY RETURN WITH
IND = 3. HAVING REPLACED THE INITIAL VALUES
OF X AND Y WITH, RESPECTIVELY, THE VALUE
XEND AND AN APPROXIMATION TO Y AT XEND.

THE SUBROUTINE CAN BE CALLED REPEATEDLY WITH
NEW VALUES OF XEND WITHOUT CHANGING ANY
OF THE OTHER PARAMETERS.

THREE ERRGR RETURNS ARE ALSO POSSIZLE. IN
WHICH CASE X AND Y WILL BE THE WMOST
RECENTLY ACCEPTED VALUES.

IND = -2 INDICATES THAT THE SUBROUTINE WAS

UNABLE TO SATISFY THE ERRCR RECUIREMENT.
THIS MAY MEAN THAT TOL IS TOO SMALL.

ING = -2 INDICATES THAT THE VALUE CF HMIN

(MINIMUM STEP-SIZE) IS GREATER THAN HMAX

C{MAXIMUM STEP-SIZE). WHICH PROBABLY MEANS

THAT THE REQUESTED TOL (WHICH IS USED IN
THE CALCULATION OF HMIN) IS TCO SMALL.

IND = -1 INDICATES THAT THE ALLOWED MAXIMUM

NUMBER OF FCN EVALUATIONS HAS EEEN
EXCEEDED. THIS CAM ONLY OCCUR IF OPTION
C{7). AS DESCRIBED BELOW. HAS BEEN USED.

COMMUNICATIONS VECTOR OF LENGTH 24. (INPUT IF
IND.NE.1. AND OUTFUT}.
C IS USED TO SELECT OPTIONS AND TO RETAIN

INFORMATION BETWEEN CALLS. THE USER NEED
NMOT BE CONCERNED WITH THE FCLLCWING
DESCRIPTION OF THE ELEMENTS OF C WHEN
DEFAULT OPTICONS ARE USED (IND=1).
HOWEVER. WHEN IT IS DESIRED TO USE IND=2
AND SELECT OPTICNS, A BASIC UNDERSTANDING
OF DVERK IS REQUIRED. THE FOLLOWING
PARAGRAPH DESCRIBES, BRIEFLY. THE BASIC
TERMS. FOR MORE DETAILS. SEE THE
REFERENCE.

DVERK ADVANCES THE INDEPENDENT VARIABLE
X ONE STEP AT A TIME UNTIL XEND IS
REACHED. THE SOLUTION IS COMPUTED AT
XTRIAL = X+HTRIAL ALONG WITH AN ERROR
ESTIMATE EST. IF EST IS LESS THAN OR
EQUAL TOQ TOL (SUCCESSFUL STEP), THE STEP
IS. ACCEPTED AND X IS ADVAMNCED TO XTRIAL.
IF EST IS GREATER THAN TOL (FAILURE)
HTRIAL IS ACJUSTED AND THE SOLUTION IS
RECOMPUTED. HMAG = ABS(HTRIAL) IS NEVER
ALLOWED TO EXCEED HMAX NOR IS IT ALLOWED
TO BECOME SMALLER THAN HMIN. THE FIRST
TRIAL STEP IS HSTART. DURING THE
COMPUTATION, A COUNTER (C(23)) IS

DJVEKQDB20
DJVEKOB30
D/EKOB40
DVEKCGSO
C/EKDBBO0
D/VEKQOB70
D/EKOG8O
DVEKD630
D/EKC700
D/EKQO710
D/EKQO720
DVEKQ73C
DVERKCO740
OVERGT750
DVEKQO760
DJ/EKQT770

JEKO780
DVERKO730
CVEKGBOO
DV/EKC810
DVEKC820
DVEKOB30
DVEKC840
DVEK(CS8S50
DVEKQO860
DVEKC870
SVEKCBEQ
CVEKC330
DVEKCS00
DVEKCS10
CVEKGCS920
CVEKCS30
DVEKOS40
CVEKCSS50
CVEKCS60
DVEKCYTO
OVvEKCSBO
CVEKC990
CVEK1CCO
CVEK1O010
CVEK 1020
CvEK1030
CVEK104Q0
CVEK1050
CVEK1060
CVvEK1070
CVEK1C80
CVEK10390
CVEK11C0
CVEK1110
CVvEK1120
CVEK1130
CVEK1140
CVEK1150
CVEK1160
CVEK1170
CVEK1180
CVEK1120
CVEK1200
CVEK1210
CVEK1220
CVEK1230
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c(1)

C(2)

€(3)
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INCREMENTED EACH TIME A TRIAL STEP FAILS

DVEK1240

TO PROVIDE A SOLUTION SATISFYING THE ERRCRD/EK1250

TOLERANCE. ANOTHER COUNTER (C(22)) IS
USED TO RECORD THE NUMBER OF SUCCESSFUL

STEPS. AFTER A SUCCESSFUL STEP. C(23) IS

SET TO ZERO.

OPTIONS. IF THE SUBROUTINE IS ENTERED WITH

IND=2, THE FIRST 9 COMPONENTS OF THE
COMMUNICATIONS VECTOR MUST BE INITIALIZED
BY THE USER. "ORMALLY THIS 1S DGNE BY
FIRST SETTING THEM ALL TO ZERO. AND THEN
THOSE CORRESPONDING TO PARTICULAR QPTIONS
ARE MADE MON-ZERO.

ERROR CONTROL INDICATOR.

THE SUBROUTINE ATTEMPTS TO CONTROL A NORM
OF THE LOCAL ERROR IN SUCH A WAY THAT THE
GLOBAL ERROR IS PROPORTIONAL TO TOL.

THE DEFINITION OF GLOBAL ERROR FOR THE
DEFAULT CASE (IND=1) IS GIVEN IN THE
NESCRIPTION OF PARAMETER TOL. THE DEFAULT

WEIGHTS ARE 1/MAX(1,ABS(Y(K))). WHEN IND=2

IS USED. THE WEIGHTS ARE DETERMINED
ACCORDING TO THE VALUE OF Ci1).
IF C{1)=1 THE WEIGHTS ARE 1
{ ABSOLUTE ERROR CONTROL)
IF C(1)=2 THE WEIGHTS ARE 1/ABS(Y(K))
FOR K=1.2..... N.
(RELATIVE ERROR CONTROL)
IF C(1)=3 THE WEIGHTS ARE
1/MAX(ABSIC(2)).ABS{Y(K)))
FOR K=1.,2, N
IRELATIVF ERROR CONTROL. UNLESS
ABS(Y(K)) IS LESS THAN THE FLOOR
VALUE . ABS(C(2)))
IF C(1)=4 THE WEIGHTS ARE
1/MAX{(ABS(C(K+30) ), ABS{Y(K)))

FOR K=1.,2,.... N.
(HERE INOIVIDUAL FLOOR VALUES
ARE USED)

IM THiS CASE. THE DIMENSICN OF C

wUST BE GREATER THAN OR EQUAL TO

N+30 AND C(31). Ci32)..... C(+30)

WMUST BE INITIALIZED BY THE USER.
IF C(1)=5 THE WEIGHTS ARE 1/ABS5(C(K+30))
FOR K=1,2,..., N.

IN THIS CASE. THE DIMENSION OF C

IMUST BE GREATER THAN CR EQUAL TO

N+30 AND C(31). Ci32)...., C(N+30)

WUST BE INITIALIZED BY THE USER.
FOR ALL OT«ER VALUES OF C(1). INCLUDING
C(1)=0 THE DEFAULT VALUES OF
THE WEIGHTS ARE TAKEN TQ BE
P/RAX (1 ABS(Y(K)))
FOR K=1,2...., N.

FLOOR VALUE. USED WHEN THE INDICATOR C(1)

HAS THE VALUE 3.

HMIN SPECIFICATION. IF NOT ZERO. THE SUB-

RCUTINE CHOOSES HMIN TO BE ABS(C(3)).
OTHERWISE T USES THE DEFAULT VALUE
10"MAX(DWARF ,RREB*MAX (NORM(Y ) /TOL,ABS(X)))

D/EK 1260
DVEK1270
DVEK1280
CJ/EK1290
DVEK 1300
DVEK1310
CVEK1320
DVEK 1330
DVEK1340
DVEK 1350
DVEK 1360
DVEK1370
DVEK 1380
OVEK1390
DVEK 1400
DVEK1410
DVEK 1420
DVEK 1430
DVEK 1440
CVEK 1450
CVEK 1460
DVEK1470
DVEK 1480
DVEK 1430
DVEK 1500
DVEK 1510
DVvEK1520
CVEK1530
DVEK154
DVEK 1550
CVEK 1560
DVEK1570
CVEK 1580
VEK 15390
CVEK 1600
CVEK1610
CVEK1620
CVEK 1630
CVEK1640
CVEK1650
CVEK 1660
CVEK1670
CVEK 1680
CVEK 1690
CVEK1700
DVEK1710
CVEK1720
CVEK1730
CVEX1740
GVEK1750
CVEK1760
CVEK1770
CVEK1780
EVEK1790
CVEK 1800
CveER1810
CVEK1820
CVEK1830

WHERE DWARF IS A VERY SMALL POSITIVE MACHINECVEK1840

NUMBER AND RREE IS THE .RELATIVE ROUNDOFF

CVEK1850
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C(4)

C(5)

c(s)

C(7)

c(s)

c{9)

Nw
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¢RROR BOUND.

HSTART SPECIFICATION. IF NOT ZERO. THE SUB-
ROUTINE WILL USE AN INITIAL HWAG EQUAL TO
ABS(C(4)). EXCEPT OF COURSE FOR THE RE-
STRICTIONS IMPOSED BY HMIN AND HMAX.
OTHERWISE 1T USES THE DEFAULT VALUE

HMAX“{TOL) - (1/6).

SCALE SPECIFICATION. THIS IS INTENDED TO BE
A MEASURE OF THE SCALE OF THE PROBLEM.
LARGER VALUES OF SCALE TEND TO MAKE THE
METHOD MORE RELIABLE. FIRST BY POSSIBLY RE-
STRICTING HMAX (AS DESCRIBED BELOW) &ND
SECOND, BY TIGHTENING THE ACCEPTANCE
REQUIREMENT. IF C(S) IS ZERO. A DEFAULT
VALUE OF 1 IS USED. FOR LINEAR HOMOGENEOQUS
PROBLEMS WiTH CONSTANT COEFFICIENTS. AN
APPROPRIATE VALUE FOR SCALE IS A NORM OF
THE ASSOCIATEC MATRIX. FOR OTHER PROBLEMS,
AN APPROXIMATION TO AN AVERAGE VALUE OF A
NORM OF THE JACOBIAN ALONG THE TRAJEC-

TORY MAY BE APPROPRIATE.

HMAX SPECIFICATICON., FQUR CASES ARE POSSIBLE,

IF C{6).NE.O AND C(S).NE.Q. HMAX 1S TAKEN
TO BE MIN(ABS(C(6)).2/ABS(C(S))).

IF C(6).NE.O AND C(5).EQ.QO. HMAX S TAKEN
TO BE ABS(CIB)).

IF. C(6).EQ.0 AND C({5).NE.O. HMAX S TAKEN
TO BE 2/ABS(CI(5)).

IF C(6).EQ.O0 AND C({S).EQ.O. HMAX S GIVEN
A DEFAULT VALUE CF 2.

MAXIMUM NUMBER OF FUNCTION EVALUATIONS. IF
NOT- ZERC. AN ERROR RETURN WITH IND = -1
WILL BE CAUSED WHEN THE NUMBER OF FUNCTION
EVALUATIONS EXCEEDS ABS(C(7)).

INTERRUPT NUMBER 1t . IF NOT ZERO. THE SUS-
ROUTINE WILL INTERRUPT THE CALCULATIOMS
AFTER IT HAS CHCSEN ITS PRELININARY VALUE
OF HMAG., AND JUST BEFORE CHOOSINC HTRIAL
AND XTRIAL IN PREPARATION FOR TAKING A STEP
(HTRIAL MAY DIFFER FROM HMAG IN SICGN. AND
MAY REQUIRE ADJUSTMENT IF XEND IS NEAR).
THE SUBROUTINE RETURNS WITH IND = 4. AMD
WILL RESUME CALCULATION AT THE POINT OF
INTERRUPTION IF RE-ENTERED WITH IND = 4,

INTERRUPT NUMBER 2, IF NOT ZERO, THE 5UB-
ROUTINE WILL INTERRUPT THE CALCULATICNS
IMMEDIATELY AFTER IT HAS DECIDED WHETHER QR
NOT TO ACCEPT THE RESULT OF THE IMOST RECENT
TRIAL STER. WITH IND = S IF IT PLANS TO
ACCEPT. OR INC = 6 IF IT PLANS TO REJECT.
Y(#) IS THE PREVIOUSLY ACCEPTED RESULT.
WHILE W(*,2} IS THE NEWLY COMPUTED TRIAL
VALUE. AND W(*.2) IS THE UNWEIGHTED ERROR
ESTIMATE VECTOR. THE SUBROUTINE WILL RESUME
CALCULATIONS AT THE POINT OF INTERRUPTION
ON RE-ENTRY WITH IND = 5 OR 6.

IND MAY BE CHANGED BY THE USER IN ORDER TO
FORCE ACCEPTANCE OF A STEP (BY CHANGING IND
FROM 6 TG 5) THAT wWOULD OTHERWISE EE
REJECTED. OR VICE VERSA.

THe FIRST DIMENSICN OF W AS IT APPEARS IN THE
CALLING PROGRANM., (INPUT)

C/EK1860
D/EX1870
DYEK1880
DVEK 1890
DVEXK19C0
DVEK1910
DVEK1920
DVEK1930
CVvEK1940
DJEK1950
DJVEK1960
DVEK1970
DVEK 1930
VEK 1990
DVEKZ000
DVEK2010
CVEK2020
DVEK2030
DVEK2040
CVvEK2050
DVEK20C60
DVEK2070
CvEK2080
DVEK2090
CVEKZ100
CVEK2110
DVEK212C
CVEKZ130
OVEKZ140
DVEK21!S0
CVEK2160
OVEK2170
CVEK2180
CVEK2180
CVvEK2200
DvEK2210
CVEKZ2220
DVEK2230
CvEK2240
CVEKZ250
CYEK2280
CVEKZ2270
CVEKZ280
CvIK2280
CvEK2300
CvEK2310
CVEK2320
CVEK2330
CVEK2340
CVvEK2350
CVEK2350
CVvEK2370 .
CVEK2380
CVEK2390
CVEK2400
CvEK2410
CVEK2420
CVEK2430
CVEK2440
CVvEK2450
CVEK2460
CVvEK2470
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IER = 120, IND IS NCT IN THE RANGE t TO 6.
IER = 131. XEND HAS NOT BEEN CHANGED FROM
PREVIOUS CALL CR X IS NOT SET 71O
THE PREVIQUS XEND VALUE.
IER = 132. THE RELATIVE ERROR CONTROL
OPTICN (C(1)=2) WAS SELECTED AND
ONE OF THE SOLUTION COMPGNENTS
IS ZERO.
PRECISION - SINGLE
REQD. IMSL ROUTINES - UERTST
LANGUAGE - FORTRAN
LATEST REVISION - DECEMBER 15, 1976
BGH
. INTEGER N.IND.NW,K
INTEGER 1ER
REAL X.Y{N).XEND.TOL.C(1).W(Nw.9).TEMP
REAL ZERO.ONE.TWO.THREE . FOUR.FIVE.SEVEN,TEN HALF A PQ.
1 C4D15.C2D3.C5D6.C106,C1D15.C2D096
REAL RK{39).REPS.RTOL
DATA 2ERO/0.0/.OMNE/1.0/.TWC/2.0/ . THREE/3.0/
DATA FOUR/3.0/.FIVE/S.0/,SEVEN/7.0/
DATA TEN/10.0/ .HALF/0.5/.P9/0.9/
DATA C4D15/ . 26656665557/
DATA C2D3/.66666666657/
DATA C5D6/.83332333333/
DATA C106/.16666660557/
DATA C1D15/.66666656667E-1/
DATA C2D96/120.42729108/
DATA REPS/013010000000006000/
DATA RTOL/0163100000C00C000/
DATA RK({ 1)/.16E666LCEB67E+Q0/
DATA RK( 2)/.53233333333€-01/
DATA RK( 3)/.21333333333E+00/
DATA RK( 4)/.83333332233E+00/
DATA RK( S)/.26665566567E+01/
DATA RK( 6)/.25000000000E+01/
DATA RK{ 7)/.25781250000CE+Q1/
DATA RK{ 8)/.916665666E7E+01/
DATA RK( 9)/.6640682SC00CGE+Q1/
DATA RK(10)/.88541£EBLBTE+Q0/
DATA RK(11)/.240000000C0GE+01/
DATA RK(12)/.80C0000000GE+D1/
DATA RK(13)/.65604573163E+01/
DATA RK(14)/.30555555556E+00/
DATA RK(15)/.345098C3922E+00/
DATA RK(16)/.55086556857E+00/
DATA RK(171/.16533333233E+01/
DATA RK(18)/.94558823529E+00/
DATA RK(19)/.32400000000E+00/
DATA RK(20)/.23373823529E+00/
DATA RK(21)/.203545631163E+01/
DATA RK(22)/.69767441860E+01/
DATA RK(23)/.56481798146E+01/
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NW MUST BE GREATER THAN OR EQUAL TOC N.

W - WORKSPA

CE MATRIX.

THE FIRST DIMENSION OF W MUST BE NW AND THE

SECOND MUST BE GREATER THAN
ARAMETER. (OUTPUT)

IER - ERROR P
TERMINA
IER =

L ERRORS

OR EQUAL TO 9.

~

129, NW IS LESS THAN N CR TOL IS LESS
THAN OR EQUAL TO ZERO.

0 fEK2480
D/EKZ24S0
D/EK2500
L/EKZ510
D/EK2820
D/EK2530
D/EK2540
D/EKZ5E0
D/EKZESO
D/EK2570
DVEKZ580
DVEK2580
OJ/EK26020
D/EK2510
DVEK2620
DVEK2630
DVEKZB40
DVEKZ550
DVEK2660
DVEK2670
DVEKZ2680
DVEK269C
CVEKZ2720
DVEK2710
DVEK272C
DVEK2730
CVEKZT74C
CVEKZ27E0
DVEK2789
SVEK2770
DVEK2780
CvEK2790
CVEK28C0
DVEKZ81Q
CvEK2820
CVvEK2830
CvEK2840
CVEK2850
CVvEKZ860
CvEK2370
CvEX2880
CVvEKZ820
CVEK2200
CVEKZ2910
CVEK2920
CVEK2230
CVvEK2940
CVEK2950
CVEKZ960
CVEK2270
CVEK2980
CVEK2990
CVEK3000
CVEKZ010
CVEK3020
CVEK3030
CVEK3C40
CVEK3050
CVEK3060
CVEK3070
CVEK3030
CVEK3090
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DATA . RK(24)/.
DATA RK(25)/.

DATA RK(261/.
DATA RK(27)/.
DATA RK(28})/.
DATA RK(23)/.

DATA RK{301)/.
DATA RK(31)/.
CATA RK(32)/.
DATA RK(331/.
DATA RK({34})/.
DATA - RK(35)/.
DATA RK(38})/.

DATA RK(371)/.
DATA RK(381})/.
DATA RK({3%)/.

IER = O

GO TO (5,5,40.145.265,265),
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13738156761E+00/
28630226610E+00/
1441725567 2E+C0/
7500000C00CE-01/
38992RG9873E+00/
31944443444E+00/
1350383631 7E+03/
10783298827€-01/
69805194805E-01/
6250000006 CE-Q2/
65630124777E-C2/
68444144484E-02/
61381073169E-02/
681818128132E-01/
10783298827E-01/
698051948B05E-01/

BEGIN INITIALIZATION, PARAMETER
CHECKING. INTERRUPT RE-ENTRIES.

ABORT IF IND OUT OF RANGE 1 TO 6
IF (IND.LT.1.0R.IND.GT.6) GO TO 2%0

CASES - INITIA
RE-ENTRY, IN
IND

L ENTRY, NORMAL

TERRUPT RE-ENTRIES

CASE 1 - INITIAL ENTRY (IND .EQ. 1

OR 2) ABORT IF N.GT.NW OR TOL.LE.C

IF (N.GT.NW.OR.TOL.LE.ZERO) GO TO 285

IF (IND.EQ.2) GO TO 15

0O 10 K=1.,9
C{K) = ZERO

CONTINUE

GO TO 30

INITIAL ENTRY WITHQUT OPTIONS
“LEQ. 1) SET C(1) TO C(9}

0

SUMMARY OF THE

COMPCONENTS QF THE

COMISUNTCATIONS VECTOR
PRESCRIBED AT THE OPTIOCN
~ OF THE USER

C(1) ERROR CONTROL INDICATOR
Ct2) FLOOR VaLUE

C(3) HMIN SPECIFICATION

C(4) HSTART SPECIFICATICN
C(5) SCALE SPECIFICATION
C{5) HMAX SPECIFICATION

C{7) MAX NO OF FCN EVALS
C(8) INTERRUPT NO 1

C(9) INTERRUPT NO 2:

DETERMINED BY THE PROGRAM

C(10) RREB(REL ROUNDOFF ERROR BND)

Cl{i1) DWARF

(VERY SMALL MACH NC)

C(12) WEIGHTED NORM Y

Ct13) HMIN
c(14) HMWMAG
C{15) SCALE
C(16) HMAX

C(17) XTRIAL

(IND
EQUAL TO

DVEK3100
DJ/EK3110
DJ/EK3120
DVEK3130
DVEK2140
DVEK3150
DVEK3160
DJEK3170
DJ/EK318C
DVEK3190
OVEK2200
DJ/EK3210
DVEK3220
DVEK3230
DVEK2240
DJ/EKZ3250
DJ/EK3260
DVEK3270
DVEK3280
DVEK3290
CVEK3200
DVEK3210
DVEK2320
GVEK3Z30
DVEX3340
DVEK2350
DVEK3360
DVEK2370
DVEK3380
DVEK3320
CVEK3400
CVEK2210
DVEK3420
CVEK3430
CVEK2440
CVEK3450
CVEK3450
CVEK2470
CVEK24E0
OVEK3490
CVEK3500
CVEK3S10
CVEK3520
CVEK3530
CVEK3540
SVEK3550
CVEK2560
CVEK3570
CVEK3580
CVEK3530
CVEK3600
CVEK3E10
LVEK2620
LVEK3830
CVEK3640
CVEK3550
CVEK3660
DVEK3670
CVEK2680
CVEK3690
CVEK37C0
CVEK3710




(9] OCOOOO0OOOOO0

15 CONTINUE
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Ct18) HTRIAL

c(19}) EST

C(20) PREVIOUS XEND

Ct21) FLAG FOR XEND

C(22) MO OF SUCCESSFUL STEPS

C(23) NO OF SUCCESSIVE FAILURES

C{24) NO OF FCN EVALS

IF C{1) = 4 OR 5, C(31).C(32),...
C(N+30) ARE FLOOR VALUES

INITIAL ENTRY WITH OPTIONS (IND .EQ.

DYEKZ720
D/EK3730
DV/EK3T740
DVEK3750
D/ER3760
DVEK3770
DVEK3780
DVEK3790
DVEKZ800
DVEK3810
DYEK3820




Appendix D

Material Property Data

It was necessary to perform a series of elastic
modulus determination tests to characterize this adherent
material. Slight variations in material properties can
be evident in molding compounds even manufactured by the
same supplier. 1In a separate, extensive study concerning
material property data, Taggart reported the elastic
modulus of SMC-25 to be 2.lxlO6 psi and the results shown

" in Table 4 are in close agreement.

Table 4
Specimen # Modulus (PSI)
SPEC1 2.21x10°
SPEC2 2.26x10°
SPEC3 » , 2.18x10°

Plate 6 shows a typical test specimen used for modulus
determination. The data for these tests may be found

on the following pages.
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PLATE 4: "Joggle-Lap" Joint Subject to Tension
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PLATE 5




PLATE 6:
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Tensile Coupons for Modulus Determination
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Curved Section

Photomicrographs Showing Relative Fiber Content

PLATE 7



